欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2220-2227.doi: 10.3724/SP.J.1006.2025.44203

• 研究简报 • 上一篇    下一篇

LsSAT2与LsAAE3互作调控山黧豆ODAP水平

刘晓宁1(), 张颖2, 蔡曼蕾2, 马昊2, 苗智博2, 曹宁3, 连荣芳3,*(), 徐全乐2,*()   

  1. 1黄河科技学院医学院, 河南郑州 450006
    2西北农林科技大学生命科学学院, 陕西杨凌 712100
    3定西市农业科学研究院, 甘肃定西 743000
  • 收稿日期:2024-12-04 接受日期:2025-04-25 出版日期:2025-08-12 网络出版日期:2025-05-07
  • 通讯作者: *连荣芳, E-mail: gsdxlianrongfang@163.com;徐全乐, E-mail: xuql03@163.com
  • 作者简介:E-mail: Xiaoningliu2016@126.com
  • 基金资助:
    河南省教育厅高等学校重点科研项目(25B180013);陕西省自然科学基金项目(2023-JC-YB-152);财政部和农业农村部国家现代农业产业技术体系建设专项(食用豆, CARS-08-Z21);河南省科技攻关项目(252102110271);国家级大学生创新创业训练计划项目(202401360B1)

Regulation of ODAP levels in Lathyrus sativus L. via interaction between LsSAT2 and LsAAE3

LIU Xiao-Ning1(), ZHANG Ying2, CAI Man-Lei2, MA Hao2, MIAO Zhi-Bo2, CAO Ning3, LIAN Rong-Fang3,*(), XU Quan-Le2,*()   

  1. 1School of Medicine, Huanghe S&T University, Zhengzhou 450006, Henan, China
    2College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
    3Dingxi Academy of Agricultural Sciences, Dingxi 743000, Gansu, China
  • Received:2024-12-04 Accepted:2025-04-25 Published:2025-08-12 Published online:2025-05-07
  • Contact: *E-mail: gsdxlianrongfang@163.com;E-mail: xuql03@163.com
  • Supported by:
    Key Scientific Research Projects of Henan Provincial Department of Education for Institutions of Higher Learning(25B180013);Natural Science Foundation of Shaanxi Province(2023-JC-YB-152);China Agriculture Research System of MOF and MARA(Food Legumes, CARS-08-Z21);Tackling-Plan Project of Henan Department of Science and Technology(252102110271);National Undergraduate Training Programs fo Innovation and Entrepreneurship(202401360B1)

摘要:

丝氨酸乙酰基转移酶LsSAT2 (serine acetyltransferase, SAT)是山黧豆中神经活性成分β-N-草酰-L-α,β-二氨基丙酸(β-N-oxalyl-L-α,β-diaminopropionic acid, β-ODAP)生物合成的关键酶。为进一步分析LsSAT2的功能及其活性调控, 本研究构建了LsSAT2过表达山黧豆毛状根株系, 利用免疫沉淀和质谱联用技术(immunoprecipitation mass spectrum, IP-MS)筛选到了LsSAT2的潜在互作蛋白草酰辅酶A合成酶LsAAE3, 通过蛋白对接、酵母双杂交(yeast two-hybrid, Y2H)、蛋白质下拉试验(pull down assay)等进行蛋白互作验证及功能分析。结果表明, 利用IP-MS从LsSAT2过表达山黧豆毛状根株系中筛选到其潜在的互作蛋白LsAAE3; Y2H和Pull down试验证实了LsAAE3与LsSAT2存在蛋白互作关系; 蛋白对接分析表明, LsSAT2通过羧基末端与LsAAE3发生蛋白互作。LsSAT2在山黧豆毛状根株系中的过表达使得β-ODAP水平相比对照降低52.4%, LsAAE3在山黧豆毛状根株系中的过表达则使得β-ODAP水平升高55.9%。上述结果加深了对山黧豆β-ODAP生物合成调控的理解。

关键词: 山黧豆, 三七素, 丝氨酸乙酰基转移酶, 草酰辅酶A合成酶, 蛋白互作

Abstract:

Serine acetyltransferase 2 (LsSAT2) in Lathyrus sativus functions as the rate-limiting enzyme in the biosynthesis of the neuroactive compound β-ODAP (β-N-oxalyl-L-α,β-diaminopropionic acid). To explore the regulatory mechanisms underlying LsSAT2 activity, we overexpressed LsSAT2 in L. sativus hairy roots. Proteins interacting with LsSAT2 were subsequently identified via immunoprecipitation followed by mass spectrometry (IP-MS), and their interactions were confirmed using protein-protein docking, yeast two-hybrid (Y2H) analysis, and pull-down assays. The results revealed that LsSAT2 interacts with an acyl-CoA synthetase, LsAAE3, through its C-terminal region. Overexpression of LsSAT2 or LsAAE3 in hairy roots led to a 52.4% reduction or a 55.9% increase in β-ODAP content, respectively, indicating a functional interplay between these two proteins. These findings provide important insights into the genetic regulation of β-ODAP biosynthesis and establish a foundation for future metabolic engineering in L. sativus.

Key words: Lathyrus sativus, dencichine, serine acetyltransferase, oxalyl-CoA synthase, protein-protein interaction

表1

本研究所用引物"

引物名称 Name of primer 引物序列Sequence of primer (5'-3')
pCAMBIA1300UBQ10-LsSAT2-F GTCGACTCTAGAGGATCCGGTACCATGTTTGTTCTTGTTCTTGGTCGTT
pCAMBIA1300UBQ10-LsSAT2-R
CGAGCTCACTAGTCTCGACTACTTATCGTCGTCATCCTTGTAATCGATAACATAATCAGACCAATCCGAA
pCAMBIA1300UBQ10-LsAAE3-F GTCGACTCTAGAGGATCCGATGGAAACCGCAACCACC
pCAMBIA1300UBQ10-LsAAE3-R GCTCCTCGCCCTTGCTCACAACTTTAGAAACAAAGTGTTCTGCT
pGBKT7-LsSAT2-F CCGCTGCAGGTCGACGGATCCCTAGATAACATAATCAGACCAATCCG
pGBKT7-LsSAT2-R CCGCTGCAGGTCGACGGATCCCTAGATAACATAATCAGACCAATCCG
pGADT7-LsAAE3-F GAGGCCAGTGAATTCATGGAAACCGCAACCACC
pGADT7-LsAAE3-R TTCATCTGCAGCTCGAGCTCAAACTTTAGAAACAAAGTGTTCTGC
pET28a-LsAAE3-F CTGGTGCCGCGCGGCAGCCATATG GAAACCGCAACCACCCTCAC
pET28a-LsAAE3-R GTGGTGGTGGTGGTGGTGCTCGAGTCAAACTTTAGAAACAAAGTGTTCTGC
pGEX2T-LsSAT2-F TCGGATCTGGTTCCGCGTATGTTTGTTCTTGTTCTTGGTC
pGEX2T-LsSAT2-R TCGTCAGTCAGTCACGAT CTAGATAACATAATCAGACCAATCC

图1

LsSAT2和LsAAE3过表达山黧豆毛状根系的Western blot验证 A: 转空载山黧豆毛状根系; B: LsSAT2过表达山黧豆毛状根系; C: LsAAE3过表达山黧豆毛状根系; D: LsSAT2过表达山黧豆毛状根系的Western blot分析; E: LsAAE3过表达山黧豆毛状根系的Western blot分析。"

图2

绿色荧光蛋白在LsAAE3过表达山黧豆毛状根中的表达 A和C为转空载山黧豆毛状根; B和D为LsAAE3过表达山黧豆毛状根。"

表2

LsSAT2和LsAAE3蛋白的质谱鉴定"

序号
Number
登录号
Accession
蛋白名称
Protein name
覆盖率Coverage (%) 特异肽段数
Unique peptides
蛋白匹配度得分
Score sequest HT
1 LATSA3860_EIv1.0_0145300.1 丝氨酸乙酰基转移酶
Serine O-acetyltransferase (SAT2)
25 8 35.73
2 LATSA3860_EIv1.0_0424890.1 草酰辅酶A合成酶
Oxalate-CoA ligase (AAE3)
20 4 22.52

图3

酵母双杂交试验分析LsAAE3与LsSAT2的蛋白互作关系"

图4

蛋白质下拉试验验证LsAAE3与LsSAT2的蛋白互作关系"

图5

基于Alphofold3.0进行LsAAE3与LsSAT2蛋白的分子对接 红色表示LsAAE3蛋白, 绿色表示LsSAT2蛋白。右下角黑框是LsSAT2蛋白的羧基末端深入到LsAAE3空腔内部的局部放大。"

表3

LsAAE3和LsSAT2蛋白相互作用面上形成的次级键"

次级键
Secondary bonds
LsAAE3参与次级键原子
Atoms of LsAAE3 involved in bonds formation
键长
Distance (Å)
LsSAT2参与次级键原子
Atoms of LsSAT2 involved in bonds formation
氢键
Hydrogen bonds
SER 250 OG 3.16 ASP 214 OD1
GLN 445 NE2 3.21 GLY 345 O
GLY 506 N 3.12 TYR 388 O
THR 322 OG1 2.39 ASP 394 OD1
ARG 416 NH2 3.57 TYR 395 O
LYS 507 NZ 3.45 VAL 396 O
ARG 510 NH1 3.34 ILE 397 OXT
ASN 280 O 3.00 THR 282 OG1
GLU 468 OE2 2.65 THR 303 OG1
GLN 445 OE1 3.10 ASN 361 N
ASP 498 O 3.08 ALA 363 N
LEU 500 O 3.45 LYS 364 N
THR 505 O 2.72 TRP 392 NE1
ALA 320 O 2.44 TYR 395 N
GLU 317 OE1 2.67 TYR 395 OH
SER 296 O 3.20 VAL 396 N
盐桥
Salt bridges
ARG 246 NH1 3.34 ASP 384 OD2
ARG 510 NH1 3.69 ILE 397 O
ARG 510 NH1 3.34 ILE 397 OXT
ARG 510 NH2 3.90 ILE 397 OXT

表4

高效液相测定不同转基因毛状根ODAP含量"

毛状根材料
Hairy root material
β-ODAP峰面积
β-ODAP peak area (mAU s)
α-ODAP峰面积
α-ODAP peak area (mAU s)
β-ODAP与α-ODAP比值
β-ODAP/α-ODAP ratio
对照
Control
262,219.33±14,673.63 c 116,719.33±9543.39 a 2.25±0.08 b
LsSAT2过表达株系
LsSAT2 overexpression line
124,752.33±17,058.04 b 67,523±23,737.76 b 1.92±0.40 b
LsAAE3过表达株系
LsAAE3 overexpression line
408,908.67±50,329.23 a 80,460.67±10,518.05 b 5.11±0.56 a
[1] 徐全乐, 蒋景龙, 焦成瑾, 张大伟, Neil C. Turner, Shiv Kumar, 熊友才. 山黧豆160年研究历程及进展. 西北植物学报, 2021, 41: 1583-1604.
Xu Q L, Jiang J L, Jiao C J, Zhang D W, Turner N C, Kumar S, Xiong Y C. Process and progress of researches on Lathyrus sativus L. over the past 160 years. Acta Bot Boreali-Occident Sin, 2021, 41: 1583-1604 (in Chinese with English abstract).
[2] Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N, Chakraborty S, Datta A. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnol J, 2016, 14: 1394-1405.
doi: 10.1111/pbi.12503 pmid: 26798990
[3] Lambein F, Travella S, Kuo Y H, Van Montagu M, Heijde M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta, 2019, 250: 821-838.
[4] Long Y C, Ye Y H, Xing Q Y. Studies on the neuroexcitotoxin beta-N-oxalo-L-alpha, beta-diaminopropionic acid and its isomer alpha-N-oxalo-L-alpha, beta-diaminopropionic acid from the root of Panax species. Int J Pept Protein Res, 1996, 47: 42-46.
pmid: 8907498
[5] Kuo Y H, Ikegami F, Lambein F. Neuroactive and other free amino acids in seed and young plants of Panax ginseng. Phytochemistry, 2003, 62: 1087-1091.
[6] Koh H L, Lau A J, Chan E C. Hydrophilic interaction liquid chromatography with tandem mass spectrometry for the determination of underivatized dencichine (beta-N-oxalyl-L-alpha, beta-diaminopropionic acid) in Panax medicinal plant species. Rapid Commun Mass Spectrom, 2005, 19: 1237-1244.
[7] Xu Q L, Liu F J, Chen P, Jez J M, Krishnan H B. β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP) content in Lathyrus sativus: the integration of nitrogen and sulfur metabolism through β-cyanoalanine synthase. Int J Mol Sci, 2017, 18: 526.
[8] Liu F J, Jiao C J, Bi C X, Xu Q L, Chen P, Heuberger A L, Krishnan H B. Metabolomics approach to understand mechanisms of β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP) biosynthesis in grass pea (Lathyrus sativus L.). J Agric Food Chem, 2017, 65: 10206-10213.
[9] Xu Q L, Liu F J, Qu R H, Gillman J D, Bi C X, Hu X, Chen P, Krishnan H B. Transcriptomic profiling of Lathyrus sativus L. metabolism of β-ODAP, a neuroexcitatory amino acid associated with neurodegenerative lower limb paralysis. Plant Mol Biol Rep, 2018, 36: 832-843.
[10] Song Y Y, Wang L, Liu F J, Jiao C J, Nan H, Shen X, Chen H, Li Y F, Lei B L, Jiang J L, et al. β-cyanoalanine synthase regulates the accumulation of β-ODAP via interaction with serine acetyltransferase in Lathyrus sativus. J Agric Food Chem, 2021, 69: 1953-1962.
[11] Ma H, Song Y Y, Zhang Y, Guo H Y, Lyu G W, Chen H, Liu J Y, Liu X N, An Z F, Wang L, et al. Critical sites of serine acetyltransferase in Lathyrus sativus L. affecting its enzymatic activities. J Agric Food Chem, 2023, 71: 7858-7865.
[12] Ikegami F, Ongena G, Sakai R, Itagaki S, Kobori M, Ishikawa T, Kuo Y H, Lambein F, Murakoshi I. Biosynthesis of β-(isoxazolin-5-on-2-yl)-l-alanine by cysteine synthase in Lathyrus sativus. Phytochemistry, 1993, 33: 93-98.
[13] Goldsmith M, Barad S, Peleg Y, Albeck S, Dym O, Brandis A, Mehlman T, Reich Z. The identification and characterization of an oxalyl-CoA synthetase from grass pea (Lathyrus sativus L.). RSC Chem Biol, 2022, 3: 320-333.
[14] Johnston G A R, Lloyd H J. Oxalyl-coenzyme A synthetase and the neurotoxin beta-n-oxalyl-l-alpha,beta-diaminopropionate. Aust J Biol Sci, 1967, 20: 1241-1244.
pmid: 6081219
[15] Malathi K, Padmanaban G, Rao S L N, Sarma P S. Studies on the biosynthesis of β-N-oxalyl-l-α,β-diaminopropionic acid, the Lathyrus sativus neurotoxin. Biochim Biophys Acta-Gen Subjects, 1967, 141: 71-78.
pmid: 6051585
[16] 贾海燕, 张颖, 陈红, 刘嘉怡, 焦成瑾, 徐全乐. 山黧豆AAE超家族基因鉴定及LsAAE3的酶活检测. 西北植物学报, 2024, 44: 443-450.
Jia H Y, Zhang Y, Chen H, Liu J Y, Jiao C J, Xu Q L. Gene identification of the AAE superfamily and AAE3 activity determination in Lathyrus sativus L. Acta Bot Boreali-Occident Sin, 2024, 44: 443-450 (in Chinese with English abstract).
[17] Edwards A, Njaci I, Sarkar A, Jiang Z Q, Kaithakottil G G, Moore C, Cheema J, Stevenson C E M, Rejzek M, Novák P, et al. Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Nat Commun, 2023, 14: 876.
doi: 10.1038/s41467-023-36503-2 pmid: 36797319
[18] 张颖. 山黧豆和豌豆中β-ODAP生物合成的蛋白调控网络分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2024.
Zhang Y. Analysis of Protein Regulatory Networks of β-ODAP Biosynthesis in Lathyrus sativus L. and Pisum sativum L. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2024 (in Chinese with English abstract).
[19] Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard A J, Bambrick J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493-500.
[20] Badawi M M, Alla A A F, Alam S, Mohamed W, Osman D, Ali S, Ahmed E M E, Adam A A, Abdullah R O, Salih M. Immunoinformatics predication and in silico modeling of epitope-based peptide vaccine against virulent Newcastle disease viruses. Am J Infect Dis Microbiol, 2016, 4: 61-71.
[21] Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol, 2007, 372: 774-797.
doi: 10.1016/j.jmb.2007.05.022 pmid: 17681537
[22] Boulfekhar R, Ohlund L, Kumaresan K M, Megoura M, Warkentin T D, Ispas-Szabo P, Sleno L, Mateescu M A. Diamine oxidase as a therapeutic enzyme: study of germination from vegetal sources and investigation of the presence of β-N-oxalyl-l-α, β-diaminopropionic acid (β-ODAP) using LC-MS/MS. Int J Mol Sci, 2023, 24: 4625.
[23] 贾海燕, 李辰浩, 宋瑶瑶, 刘凤娟, 焦成瑾, 徐全乐. 山黧豆β-腈基丙氨酸合成酶基因LsCAS的原核表达及蛋白聚合状态分析. 西北植物学报, 2021, 41: 1605-1610.
Jia H Y, Li C H, Song Y Y, Liu F J, Jiao C J, Xu Q L. Prokaryotic expression and protein polymerization analysis of β-cyanoalanine synthase in Lathyrus sativus. Acta Bot Boreali-Occident Sin, 2021, 41: 1605-1610 (in Chinese with English abstract).
[24] 宋瑶瑶. 山黧豆β-ODAP生物合成关键酶丝氨酸乙酰基转移酶活性调控的机制研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2021.
Song Y Y. Activity Regulation of Serine Acetyltransferase, a Key Enzyme Involved in β-ODAP Biosynthesis of Lathyrus sativus. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2021 (in Chinese with English abstract).
[25] De Bruyn A, Becu C, Lambein F, Kebede N, Abegaz B, Nunn P B. The mechanism of the rearrangement of the neurotoxin β-ODAP to α-ODAP. Phytochemistry, 1994, 36: 85-89.
[1] 周恩强, 缪亚梅, 周瑶, 姚梦楠, 赵娜, 王永强, 朱宇翔, 薛冬, 李宗迪, 石宇欣, 李波, 汪凯华, 顾春燕, 王学军, 魏利斌. 基于种子发育转录组的豌豆bZIP基因家族分析及种子发育候选基因的鉴定[J]. 作物学报, 2025, 51(4): 914-931.
[2] 玉泉馨, 杨宗桃, 张海, 程光远, 焦文迪, 曾康, 罗廷绪, 黄国强, 王璐, 徐景升. 甘蔗类钙调素ScCML13与SCMV运动蛋白P3N-PIPO的互作研究[J]. 作物学报, 2024, 50(7): 1855-1866.
[3] 王连南, 李远超, 余乃通, 麦伟涛, 李亚军, 陈新. MeTCP3a转录因子在木薯叶片发育中的功能鉴定[J]. 作物学报, 2024, 50(11): 2720-2730.
[4] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[5] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[6] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[7] 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676.
[8] 刘淑娴, 杨宗桃, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗易化子家族蛋白ScZIFL1与6K2互作应答SCMV侵染[J]. 作物学报, 2022, 48(12): 3080-3090.
[9] 许彬, 曹绍玉, 苏甜, 彭梦玲, 吕霞, 李振林, 张国平, 许俊强. 结球甘蓝类钙调蛋白CMLs与花粉萌发NPG1及NPGRs相互作用研究[J]. 作物学报, 2022, 48(11): 2934-2944.
[10] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[11] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[12] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[13] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[14] 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225.
[15] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!