欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2228-2239.doi: 10.3724/SP.J.1006.2025.44159

• 研究简报 • 上一篇    下一篇

大豆e1-as基因突变体的创制及生理分析

贺红利1(), 张雨涵1, 杨静2, 程云清1, 赵杨1, 李星诺1, 司洪亮3, 张兴政1,*(), 杨向东2,*()   

  1. 1吉林师范大学, 吉林四平 136000
    2吉林省农业科学院, 吉林长春 130000
    3吉林师范大学博达学院, 吉林四平 136000
  • 收稿日期:2024-09-24 接受日期:2025-04-25 出版日期:2025-08-12 网络出版日期:2025-05-13
  • 通讯作者: *张兴政, E-mail: zxz20051986@163.com;杨向东, E-mail: xdyang020918@126.com
  • 作者简介:E-mail: honglihe2002@126.com
  • 基金资助:
    国家自然科学基金项目(32101649);吉林省科技创新创业卓越人才(团队)项目(20240601063RC)

Creation and physiological analysis of an e1-as gene mutant in soybean

HE Hong-Li1(), ZHANG Yu-Han1, YANG Jing2, CHENG Yun-Qing1, ZHAO Yang1, LI Xing-Nuo1, SI Hong-Liang3, ZHANG Xing-Zheng1,*(), YANG Xiang-Dong2,*()   

  1. 1Jilin Normal University, Siping 136000, Jilin, China
    2Jilin Academy of Agricultural Sciences, Changchun 130000, Jilin, China
    3Boda College, Jilin Normal University, Siping 136000, Jilin, China
  • Received:2024-09-24 Accepted:2025-04-25 Published:2025-08-12 Published online:2025-05-13
  • Contact: *E-mail: zxz20051986@163.com;E-mail: xdyang020918@126.com
  • Supported by:
    National Natural Science Foundation of China(32101649);Outstanding Talents Team Project of Department of Science and Technology of Jilin Province(20240601063RC)

摘要:

大豆是光周期高度敏感植物, E1基因是大豆光周期开花机制中的一个核心基因。本研究通过CRISPR/Cas9基因编辑技术构建E1基因编辑载体, 并转化大豆Williams 82。对E1基因的PCR扩增产物进行测序发现, T1代植株中有基因编辑发生, 进而培育T2代; 通过对T2e1-as-79突变体基因测序发现, E1基因在靶点1处发生了单碱基插入, 导致编码序列提前终止。e1-as-79突变体的T3代植株开花时间比野生型大豆早(10±2) d, 新出复叶叶绿素的测定值比野生型大豆低(6±2) μg g-1, 完全展开复叶叶绿素含量比野生型大豆低(10±4) μg g-1。突变体植株的花粉萌发率比野生型大豆低8%±1%, 突变体植株在0.25、0.50、1.00和2.00 h时的花粉管长度分别为(33.96±5.00)、(74.14±5.00)、(142.86±5.00)和(183.50±5.00) μm, 而野生型大豆在同等时间上的花粉管长度分别为(46.08±5.00)、(118.89±5.00)、(228.35±5.00)和(307.72±5.00) μm。根据性状对e1-as-79突变体和野生型进行转录组分析, 共发现3615个差异基因, 其中FT2aFT5a的表达上升, 推测这2个基因可能导致植株早花。

关键词: 大豆, E1基因, 基因编辑, 突变体, 转录组

Abstract:

Glycine max is a photoperiod-sensitive plant, and E1 is a key gene regulating flowering time in soybean. As a core component of the photoperiodic flowering pathway, E1 plays a critical role in controlling the timing of floral transition. In this study, we constructed a CRISPR/Cas9-based genome editing vector targeting the E1 gene and introduced it into the soybean cultivar Williams 82. Gene editing was successfully detected in the E1 gene of T1 generation plants, and T2 generation plants were subsequently developed. Sequencing analysis revealed a single base insertion at target site 1 in the E1 gene, resulting in a premature stop codon and truncated protein. Phenotypic analysis showed that the flowering time of the T3 generation was approximately (10±2) days earlier than that of the wild type. In addition, chlorophyll content in the newly emerged trifoliate leaves of the mutant was (6±2) μg g-1 lower than in the wild type, while in fully expanded leaves, it was (10±4) μg g-1 lower. The pollen germination rate in the mutant was 8%±1% lower compared to the wild type. Furthermore, mutant pollen tube lengths measured at 0.25, 0.50, 1.00, and 2.00 hours were (33.96±5.00), (74.14±5.00), (142.86±5.00), (183.50±5.00) μm, respectively, whereas the corresponding values in the wild type were (46.08±5.00), (118.89±5.00), (228.35±5.00), and (307.72±5.00) μm. Transcriptome analysis of the e1-as-79 mutant and the wild type identified 3615 differentially expressed genes, including key flowering regulators FT2a and FT5a, which likely contribute to the early flowering phenotype observed in the mutant.

Key words: soybean, E1 gene, gene editing, mutant, transcriptome

表1

基因编辑靶点引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
e1-T1-F attgCCTTTCTTTCAACATATAAA
e1-T1-R aaacTTTATATGTTGAAAGAAAGG
e1-T2-F gtcaCGCTAACCGATAGCGATTT
e1-T2-R aaacAAATCGCTATCGGTTAGCG

表2

qRT-PCR引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
Actin F: TGTGTTGGACTCTGGTGATGGTGT
R: TCACATCCCTGACGATTTCTCGCT
FT2a F: TGATGGGGATTCATCGTTTGGT
R: AGAGTGTGGGAGATTGCCAATT
FT5a F: AATCGCCCTAGGGTTACTGTTG
R: ATTCTGGGGTGATGACAGTGTC
IM F: GGACAAGATTTGGAGGGCCTAA
R: GATCCATTTCATCACCACGCTG
Adagio F: GGTTTAGCCAGTCAAAGTGCTG
R: TCAGTATCCATTCCTCCCCAGT
MYB F: AGCAATGCCACCTCAAATCAAC
R: GTCCAAGGCCCTTTCTTCAAAC
EPFL2 F: GCAGCCATGGCAACTTTTCTTA
R: TGTATAGGATCCATGCTGACGC
EPFL1 F: GGCAAGAGGTCAAACCAATCAC
R: GTGGAAGGGTTGAAGGAGAGAG

图1

单菌落进行PCR验证 1~8: 在卡那霉素抗性的LB平板上的大肠杆菌单菌落。M: 5000 bp DNA分子量标准。"

图2

大豆遗传转化过程 A: 侵染; B: 共培养; C: 芽诱导; D: 芽伸长; E: 生根; F: 移栽。"

图3

T1代植株的株高和粒数 不同小写字母表示在0.05水平差异显著。W82: Williams 82; H1-1~H1-5: T0代5个单株的后代。"

图4

单株测序结果 A: T2代e1-as-79突变体E1基因测序结果; B: Williams 82的E1基因序列。紫色: 靶点1序列; 黄色: 靶点2序列; 红色: e1-as-79插入碱基; 绿色: 部分3′非翻译区序列; 蓝色: 基因编码区; 粉色: 5′非翻译区序列。"

图5

T3代突变体与野生型开花的时间 ****表示在0.0001水平差异显著。"

图6

叶绿素含量 New代表新出的顶叶; Middle代表成熟的中部叶; Basal代表成熟的底部叶。*表示在0.05水平差异显著。"

图7

花粉离体萌发试验 A: 花粉管长度; B: Williams 82花粉萌发0.50 h; C: e1-as-79突变体花粉萌发0.50 h; D: 突变体植株与Williams 82的花粉萌发率。*、**、****分别表示在0.05、0.01、0.0001水平差异显著。"

图8

差异表达基因火山图"

图9

GO富集分析结果 A: 生物学过程上调富集气泡图; B: 生物学过程下调富集气泡图; C: 细胞组分上调富集气泡图; D: 细胞组分下调富集气泡图; E: 分子功能上调富集气泡图; F: 分子功能下调气泡图。"

表3

与开花相关的上调基因"

基因编码
Gene ID
表达量
log2 FC
上调/下调Up/down 功能描述
Feature description regulation
Glyma.08G154500 2.072 Up 花粉管发育; 花粉管生长 Pollen tube development; pollen tube growth
Glyma.08G259300 1.983 Up 花粉管发育; 花粉管生长 Pollen tube development; pollen tube growth
Glyma.10G020800 1.470 Up 花粉管发育; 花粉管生长 Pollen tube development; pollen tube growth
Glyma.13G120800 2.425 Up 花粉管发育; 花粉管生长 Pollen tube development; pollen tube growth
Glyma.15G033600 1.455 Up 花粉管发育Pollen tube development
Glyma.18G283500 3.389 Up 花粉管发育Pollen tube development
Glyma.19G207900 3.095 Up 花粉管发育; 花粉管生长 Pollen tube development; pollen tube growth
Glyma.13G218500 1.082 Up 光周期开花; 花发育Photoperiodic flowering; flower development
Glyma.16G150700 1.407 Up 短日照光周期Short-day photoperiodism
Glyma.13G265000 1.346 Up 短日照光周期; 基因表达调控Short-day photoperiodism; regulation of gene expression
Glyma.01G029300
4.026
Up
植物胚珠发育; 子房发育; 花轮发育
Plant ovule development; pant-type ovary development; floral whorl development
Glyma.04G094800
2.843
Up
植物胚珠发育; 子房发育; 花轮发育
Plant ovule development; plant-type ovary development; floral whorl development
Glyma.06G096500

1.521

Up

植物胚珠发育; 子房发育; 花轮发育; 花器官发育
Plant ovule development; plant-type ovary development; floral whorl development; floral organ development
Glyma.16G044100 2.474 Up 光周期; 开花Photoperiodism; flowering
Glyma.06G205800 1.252 Up 花序分生组织同一性的维持Maintenance of inflorescence meristem identity

表4

与开花相关的下调基因"

基因编码
Gene ID
表达量
log2 FC
上调/下调
Up/down
功能描述
Feature description regulation
Glyma.01G219200
-2.320
Down
花发育的正向调节; 花发育的调控
Positive regulation of flower development; regulation of flower development
Glyma.05G239400
-1.370
Down
花发育的正向调节; 花发育的调控
Positive regulation of flower development; regulation of flower development
Glyma.08G046500 -1.156 Down 花发育的调控 Regulation of flower development
Glyma.03G019400

-3.731

Down

花轮组织; 花组织; 花轮形态发生; 花形态发生; 花器官发育
Floral whorl structural organization; flower structural organization; floral whorl morphogenesis; flower morphogenesis; floral organ development
Glyma.07G081300

-7.698

Down

花轮组织; 花组织; 花轮形态发生; 花形态发生; 花器官发育; 花形态发生
Floral whorl structural organization; flower structural organization; floral whorl morphogenesis; flower morphogenesis; floral organ development; flower morphogenesis
Glyma.12G052300 -1.099 Down 花器官发育 Floral organ development
Glyma.06G051600 -1.471 Down 花器官发育 Floral organ development
Glyma.06G188400 -2.546 Down 花粉管生长调控 Regulation of pollen tube growth
Glyma.07G019800
-4.209
Down
花粉管发育; 长日光周期; 开花
Pollen tube development; long-day photoperiodism; flowering
Glyma.01G219200 -2.320 Down 光周期; 开花 Photoperiodism; flowering
Glyma.02G176700
-1.005
Down
长日照周期开花; 光周期; 开花
Long-day photoperiodism flowering; photoperiodism; Flowering
Glyma.02G09920 -1.223 Down 光周期; 开花Photoperiodism; flowering
Glyma.04G027000 -3.841 Down DNA结合转录因子活性DNA-binding transcription factor activity
Glyma.06G009100 -7.533 Down DNA结合转录因子活性DNA-binding transcription factor activity
Glyma.11G112800 -1.614 Down DNA结合转录因子活性DNA-binding transcription factor activity

图10

差异表达基因的qRT-PCR验证 A: 与开花相关的上调基因对比图; B: 与开花相关的下调基因对比图。"

[1] 赖笔威, 陈磊, 芦思佳. 大豆光周期适应性研究进展. 遗传, 2023, 45: 793-800.
Lai B W, Chen L, Lu S J. The current status of photoperiod adaptability in soybean. Hereditas (Beijing), 2023, 45: 793-800 (in Chinese with English abstract).
[2] Zheng N W, Guo Y K, Wang S Y, Zhang H, Wang L, Gao Y, Xu M, Wang W Y, Liu W G, Yang W Y. Identification of E1-E4allele combinations and ecological adaptability of soybean varieties from different geographical origins in China. Front Plant Sci, 2023, 14: 1222755.
[3] Perfil’ev R, Shcherban A, Potapov D, Maksimenko K, Kiryukhin S, Gurinovich S, Panarina V, Polyudina R, Salina E. Impact of allelic variation in maturity genes E1-E4 on soybean adaptation to central and west Siberian regions of Russia. Agriculture, 2023, 13: 1251.
[4] Zhai H, Wan Z, Jiao S, Zhou J W, Xu K, Nan H Y, Liu Y X, Xiong S S, Fan R, Zhu J L, et al. GmMDE genes bridge the maturity gene E1 and florigens in photoperiodic regulation of flowering in soybean. Plant Physiol, 2022, 189: 1021-1036.
[5] Liu L F, Gao L, Zhang L X, Cai Y P, Song W W, Chen L, Yuan S, Wu T T, Jiang B J, Sun S, et al. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super- early maturity and adaptation to high-latitude short-season regions. J Integr Agric, 2022, 21: 326-335.
doi: 10.1016/S2095-3119(20)63391-3
[6] 侯思宇, 王俊苏, 韩德复. 大豆生育期基因E1-E4研究概述. 长春师范大学学报, 2024, 43(2): 118-123.
Hou S Y, Wang J S, Han D F. Overview of research on soybean maturity genes E1-E4. J Changchun Norm Univ, 2024, 43(2): 118-123 (in Chinese with English abstract).
[7] 张普, 贾世豪, 莎珍, 杨植雅, 欧侨欣, 曹永策. 大豆开花和成熟期显性E1等位基因关联分析. 西北植物学报, 2024, 44: 624-633.
Zhang P, Jia S H, Sha Z, Yang Z Y, Ou Q X, Cao Y C. Association analysis of dominant E1 alleles at flowering and maturing stage in soybean. Acta Bot Boreali-Occident Sin, 2024, 44: 624-633 (in Chinese with English abstract).
[8] 朱瑞艳, 许莹, 时敏, 开国银. CRISPR/Cas9技术在药用植物中的应用与展望. 科学通报, 2025, 70: 2526-2541.
Zhu R Y, Xu Y, Shi M, Kai G Y. Application and prospect of CRISPR/Cas9 technology in medicinal plants. Chin Sci Bull, 2025, 70: 2526-2541 (in Chinese with English abstract).
[9] 权莹, 张晓娟, 赵辉, 孙晓敏, 马秀奇. CRISPER/Cas9系统在植物基因组定点修饰及作物遗传育种中的应用研究进展. 中国农学通报, 2022, 38(26): 9-14.
doi: 10.11924/j.issn.1000-6850.casb2021-0757
Quan Y, Zhang X J, Zhao H, Sun X M, Ma X Q. CRISPER/Cas9 system in plant genome modification and crop genetics and breeding: research progress. Chin Agric Sci Bull, 2022, 38(26): 9-14 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2021-0757
[10] 李可, 吴传银, 隋毅. CRISPR/Cas基因编辑技术在水稻育种中的研究进展. 科学通报, 2025, 70: 2483-2494.
Li K, Wu C Y, Sui Y. Research progress of CRISPR/Cas gene editing technology in rice breeding. Chin Sci Bull, 2025, 70: 2483-2494 (in Chinese with English abstract).
[11] 朱宗财, 王志军, 高能, 武冬梅. CRISPR/Cas9基因编辑技术在植物抗病性改良中的应用综述. 江苏农业科学, 2024, 52(3): 1-11.
Zhu Z C, Wang Z J, Gao N, Wu D M, Application of CRISPR/Cas9 gene editing technology in improvement of plant disease resistance: a review. Jiangsu Agric Sci, 2024, 52(3): 1-11 (in Chinese with English abstract).
[12] 谢先荣, 曾栋昌, 谭健韬, 祝钦泷, 刘耀光. 基于CRISPR编辑系统的DNA片段删除技术. 植物学报, 2021, 56: 44-49.
doi: 10.11983/CBB20203
Xie X R, Zeng D C, Tan J T, Zhu Q L, Liu Y G. CRISPR-based DNA fragment deletion in plants. Chin Bull Bot, 2021, 56: 44-49 (in Chinese with English abstract).
[13] 淡俊豪, 夏玉梅, 詹祎捷, 余木兰, 唐宁, 卜小兰, 齐绍武, 曹孟良. 植物转基因删除技术研究进展. 分子植物育种, 2021, 19: 4005-4013.
Dan J H, Xia Y M, Zhan Y J, Yu M L, Tang N, Bu X L, Qi S W, Cao M L. Advances on gene deletion technology in transgenic plant. Mol Plant Breed, 2021, 19: 4005-4013 (in Chinese with English abstract).
[14] Yang J, Xing G J, Niu L, He H L, Guo D Q, Du Q, Qian X Y, Yao Y, Li H Y, Zhong X F, et al. Improved oil quality in transgenic soybean seeds by RNAi-mediated knockdown of GmFAD2-1B. Transgenic Res, 2018, 27: 155-166.
[15] Ha D H, Kim H J. Mutation of storage protein gene using CRISPR/Cas9 removed α′-subunit of β-conglycinin in soybean seeds. Plant Biotechnol Rep, 2023, 17: 939-945.
[16] Cai Y P, Chen L, Hou W S. Genome editing technologies accelerate innovation in soybean breeding. Agronomy, 2023, 13: 2045.
[17] 李亦君, 夏琳, 杨小贝, 王中, 谢小东, 杨军, 宁黔冀, 武明珠. 基于CRISPR/Cas9技术的烟草NtHQT2基因敲除及功能分析. 烟草科技, 2024, 57(9): 33-39.
Li Y J, Xia L, Yang X B, Wang Z, Xie X D, Yang J, Ning Q J, Wu M Z. CRISPR/Cas9-mediated knockout and functional analysis of NtHQT2 gene in tobacco. Tob Sci Technol, 2024, 57(9): 33-39 (in Chinese with English abstract).
[18] 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/ Cas9多基因编辑载体构建和突变分析的操作方法. 中国科学:生命科学, 2018, 48: 783-794.
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Sci Sin Vitae, 2018, 48: 783-794 (in Chinese with English abstract).
[19] Omelina E S, Yushkova A A, Motorina D M, Volegov G A, Kozhevnikova E N, Pindyurin A V. Optogenetic and chemical induction systems for regulation of transgene expression in plants: use in basic and applied research. Int J Mol Sci, 2022, 23: 1737.
[20] 郭梦茹, 夏义苗, 陈复生. 大豆制品转基因检测中PCR技术的应用进展及展望. 大豆科学, 2022, 41: 490-497.
Guo M R, Xia Y M, Chen F S. Application progress of PCR technology in transgenic detection of soybean products. Soybean Sci, 2022, 41: 490-497 (in Chinese with English abstract).
[21] 李有宝, 于寒松. 抗除草剂转基因大豆的研究进展. 分子植物育种, 网络首发 [2022-06-28], https://link.cnki.net/urlid/46.1068.S.20220627.1722.005 .
Li Y B, Yu H S. Research progress of herbicide-resistant transgenic soybean. Mol Plant Breed, Published online [2022-06-28], https://link.cnki.net/urlid/46.1068.S.20220627.1722.005 (in Chinese with English abstract).
[22] Wicharuck S, Suang S, Chaichana C, Chromkaew Y, Mawan N, Soilueang P, Khongdee N. The implementation of the SPAD-502 chlorophyll meter for the quantification of nitrogen content in Arabica coffee leaves. MethodsX, 2024, 12: 102566.
[23] Vishwakarma M, Kulhare P S, Tagore G S. Estimation of chlorophyll using SPAD meter. Int J Environ Clim Change, 2023, 13: 1901-1912.
[24] 明帮燕, 黄梅, 付旭娟, 杨青山, 周浓, 郭冬琴. 浙贝母叶片SPAD值与叶绿素含量的相关性分析. 南方农业, 2023, 17(9): 34-37.
Ming B Y, Huang M, Fu X J, Yang Q S, Zhou N, Guo D Q. Correlation analysis between SPAD value and chlorophyll content of Fritillaria thunbergii leaves. South China Agric, 2023, 17(9): 34-37 (in Chinese with English abstract).
[25] 骆亮仲, 李卓蔚, 周浓, 夏李, 付旭娟, 黄梅, 郭冬琴. 滇重楼叶片和花萼的SPAD值与叶绿素含量的相关性分析. 南方农业, 2023, 17(3): 155-161.
Luo L Z, Li Z W, Zhou N, Xia L, Fu X J, Huang M, Guo D Q. Correlation analysis between SPAD value and chlorophyll content in leaves and calyx of Paris polyphylla var. yunnanensis. South China Agric, 2023, 17(3): 155-161 (in Chinese with English abstract).
[26] 华超. 类钙调蛋白PlCML25调控芍药远缘杂交花粉生长的功能研究. 河南农业大学硕士学位论文, 河南郑州, 2024.
Hua C. Study on the Function of Calmodulin PlCML25 in Regulating the Pollen Growth of Paeonia lactiflora Distant Hybridization. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2024 (in Chinese with English abstract).
[27] 乔倩. 拟南芥蛋白激酶PDK1调控花粉管极性生长的分子机理研究. 山东农业大学硕士学位论文,山东泰安, 2023.
Qiao Q. Molecular Mechanism of Arabidopsis Protein Kinase PDK1 Regulating Polar Growth of Pollen tubes. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2023 (in Chinese with English abstract).
[28] 张舒展. ROP信号途径调控花粉萌发的分子机理研究. 山东农业大学硕士学位论文,山东泰安, 2023.
Zhang S Z. Functional Analysis of ROP Signaling in Pollen Germination in Arabidopsis. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2023 (in Chinese with English abstract).
[29] 曹颖, 竹龙鸣, 邓平, 陈紫芸, 袁凤杰. 模拟干旱胁迫下大豆耐旱突变体的生理和转录组分析. 大豆科学, 2024, 43: 421-430.
Cao Y, Zhu L M, Deng P, Chen Z Y, Yuan F J. Physiological and transcriptomic analysis of a soybean drought-tolerant mutant under simulate drought stress. Soybean Sci, 2024, 43: 421-430 (in Chinese with English abstract).
[30] Han J N, Guo B F, Guo Y, Zhang B, Wang X B, Qiu L J. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Front Plant Sci, 2019, 10: 1446.
doi: 10.3389/fpls.2019.01446 pmid: 31824524
[31] Wan Z, Liu Y X, Guo D D, Fan R, Liu Y, Xu K, Zhu J L, Quan L, Lu W T, Bai X, et al. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. Front Plant Sci, 2022, 13: 1066820.
[32] Li H Y, Chen Z, Wang F, Xiang H L, Liu S R, Gou C J, Fang C, Chen L Y, Bu T T, Kong F J, et al. J-family genes redundantly regulate flowering time and increase yield in soybean. Crop J, 2024, 12: 944-949.
[1] 王克晶, 李向华. 我国珍稀的大豆属多年生烟豆和短绒野大豆物种遗传资源濒危性评估分析[J]. 作物学报, 2025, 51(8): 2009-2019.
[2] 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008.
[3] 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756.
[4] 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513.
[5] 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568.
[6] 殷丛丛, 李睿琦, 岳霈尧, 李晨, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 基于闭合哑铃介导等温扩增可视化检测大豆花叶病毒SC15方法的建立及应用[J]. 作物学报, 2025, 51(5): 1248-1260.
[7] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[8] 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631.
[9] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[10] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284.
[11] 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173.
[12] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[13] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[14] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[15] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!