欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (8): 2240-2250.doi: 10.3724/SP.J.1006.2025.51008

• 研究简报 • 上一篇    

小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定

高梦娟(), 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东*(), 任妍*()   

  1. 河南农业大学农学院 / 小麦玉米两熟高效生产全国重点实验室, 河南郑州 450046
  • 收稿日期:2025-01-17 接受日期:2025-04-27 出版日期:2025-08-12 网络出版日期:2025-05-13
  • 通讯作者: *任妍, E-mail: feier201000@163.com;余晓东, E-mail: xdyu@henau.edu.cn
  • 作者简介:E-mail: 2307766092@qq.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1201504);河南省重大科技专项(201100110100);河南省科技研发计划联合基金项目(242103810020);中国博士后科学基金项目(2023M741068)

Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat

GAO Meng-Juan(), ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong*(), REN Yan*()   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of High-efficiency Production of Wheat-maize Double Cropping, Zhengzhou 450046, Henan, China
  • Received:2025-01-17 Accepted:2025-04-27 Published:2025-08-12 Published online:2025-05-13
  • Contact: *E-mail: feier201000@163.com;E-mail: xdyu@henau.edu.cn
  • Supported by:
    National Key Research and Development Program(2022YFD1201504);Henan Major Science and Technology Project(201100110100);Science and Technology R & D Plan Joint Fund of Henan Province(242103810020);China Postdoctoral Science Foundation(2023M741068)

摘要:

由禾谷丝核菌(Rhizoctonia cerealis)引起的小麦纹枯病是我国小麦生产上极具破坏性的土传性病害, 严重影响小麦高产和稳产。选育和种植抗病品种是防治该病害最为经济有效和绿色环保的途径之一, 而纹枯病抗性基因挖掘是培育抗性品种的重要基础。本研究收集了349份黄淮麦区小麦种质并将其种植于河南农业大学小麦分子育种创新团队人工气候室进行纹枯病表型鉴定, 利用小麦660K SNP芯片对其进行基因型分析, 采用混合线性模型的方法对其进行全基因组关联分析(genome-wide association study, GWAS), 在小麦5A染色体短臂上挖掘到1个新的抗小麦纹枯病QTL位点, 命名为Qse.hnau-5AS, 其中15个显著性SNP集中在960.6 kb区段内。根据中国春高质量基因组信息, Qse.hnau-5AS区段内共包含13个高可信度(high-confidence, HC)注释基因。结合病原菌诱导和组织特异性表达分析, 推测其中1个编码刺猬互作蛋白类似蛋白基因(TaHIPL)和1个编码质膜ATP酶基因(TaHA)可能参与调控小麦纹枯病抗性。利用病毒介导基因沉默(virus-induced gene silencing, VIGS)技术对上述2个抗纹枯病候选基因进行功能验证。接种病毒14 d后, qRT-PCR结果显示, VIGS沉默植株中TaHIPLTaHA基因表达水平均显著下调, 表明2个基因均被有效沉默。表型鉴定发现, 与对照相比, VIGS沉默植株的病情指数(disease index, DI)较对照显著或极显著增加, 植株更感纹枯病。综上所述, TaHIPLTaHA很可能是Qse.hnau-5AS的候选基因且可正调控小麦纹枯病抗性。本研究为小麦抗纹枯病分子机制的解析及抗病育种提供了新的基因和材料资源。

关键词: 小麦, 纹枯病, 苗期抗性, 全基因组关联分析, 病毒介导的基因沉默

Abstract:

Sharp eyespot, caused by Rhizoctonia cerealis, is a destructive soil-borne disease that poses a serious threat to wheat production in China, significantly affecting yield stability and productivity. Breeding and deploying resistant varieties is one of the most economical, effective, and environmentally sustainable strategies for disease control. Identifying resistance genes is fundamental to the development of superior resistant varieties. In this study, 349 wheat varieties (or lines) from the Huang-huai region of China were collected and evaluated for sharp eyespot resistance in an artificial climate chamber at the Wheat Molecular Breeding Innovation Center, Henan Agricultural University. Genotyping was performed using the wheat 660K SNP array. A genome-wide association study (GWAS) was conducted using a mixed linear model (MLM) approach, integrating phenotypic data to identify loci associated with resistance. A novel quantitative trait locus (QTL), designated Qse.hnau-5AS, was identified on the short arm of chromosome 5A. GWAS results revealed 15 significant SNPs clustered within a 960.6 kb genomic region. Haplotype analysis confirmed that this locus significantly enhances resistance to sharp eyespot. Within the Qse.hnau-5AS region, 13 high-confidence annotated genes were identified. Based on expression profiling and response to R. cerealis infection, two candidate genes were proposed: one encoding a Hedgehog-interacting-like protein (TaHIPL) and the other encoding a plasma membrane ATPase (TaHA). Functional validation using virus-induced gene silencing (VIGS) showed that silencing of TaHIPL and TaHA resulted in significant downregulation of gene expression (confirmed by qRT-PCR) and a marked increase in disease index (DI) compared to control plants. These findings indicate that TaHIPL and TaHA positively regulate resistance to sharp eyespot in wheat. This study provides valuable genetic resources for understanding the molecular mechanisms underlying sharp eyespot resistance and for advancing resistance breeding in wheat.

Key words: wheat, sharp eyespot, seedling-stage resistance, GWAS, VIGS

图1

349份材料小麦纹枯病表型频次分布图(A)及重复间相关分析(B) DI1 表示重复1的病情指数, DI2 表示重复2的病情指数, DIA表示2次重复病情指数的平均值。"

表1

中抗及以上纹枯病抗性的小麦材料"

品种名称
Name of wheat varieties
平均病情指数
Average disease index
品种名称
Name of wheat varieties
平均病情指数
Average disease index
珍麦5号 Zhenmai 5 39.81 新麦37 Xinmai 37 46.97
郑麦518 Zhengmai 518 42.22 百农1306 Bainong 1306 47.31
济研麦7号 Jiyanmai 7 43.06 晋麦47/1*2 F13 Jinmai 47/1*2 F13 47.53
丹麦118 Danmai 118 43.52 石4185/1*3 F10 Shi 4185/1*3 F10 47.56
江东门/1*5 F7 Jiangdongmen/1*5 F7 44.32 新植519 Xinzhi 519 47.82
好庄稼1号 Haozhuangjia 1 44.40 泰禾麦3号 Taihemai 3 48.06
天宁18号 Tianning 18 44.44 郑鑫758 Zhengxin 758 48.15
郑麦516 Zhengmai 516 44.44 和麦2号 Hemai 2 48.15
粮源A6 Liangyuan A6 44.78 金麦108 Jinmai 108 48.33
(1/晋麦49 F7)//(咸83(104)-11中“S”/1 F4) F9
(1/Jinmai 49 F7)//(Xian 83(104)-11 Zhong “S”/1 F4) F9
46.42 农大2018 Nongda 2018 48.68
(Bolero/1*2)//汶农9号 F8 (Bolero/1*2)//Wennong 9 F8 46.67 许优46 Xuyou 46 49.44
滑研328 Huayan 328 46.76 裕丰1号 Yufeng 1 49.92

表2

供试材料的抗性分类及代表性品种"

抗性水平
Resistance level
病指范围
Range of disease index
份数
Number of varieties
代表性材料
Representative varieties
抗病 Resistant <50 24 珍麦5号, 郑麦518 Zhenmai 5, Zhengmai 518
中感 Moderately susceptible 50-70 229 研丰712, 光泰369 Yanfeng 712, Guangtai 369
高感 Highly susceptible >70 90 佳麦99, 子麦615 Jiamai 99, Zimai 615

表3

品种间病情指数的方差分析"

变异来源
Source of variation
离均差平方和
Sum of squares of deviation from mean
自由度
Freedom of degree
均方
Mean square
F
F-value
P
P-value
重复 Repeat 1.62 1 1.62 0.07 0.79
基因型 Genotype 46,840.46 333 140.66 6.21 1.3E-55**
误差 Error 7547.71 333 22.67
总计 Total 54,389.79 667

图2

全基因组关联分析在小麦5A染色体上发现一个新的纹枯病抗性QTL位点 A: 349份小麦材料的主成分分析图, HN亚群为243份黄淮麦区小麦品种(品系), JZ亚群为106份偃展4110导入系材料; B: 小麦纹枯病平均病情指数的QQ图; C: 小麦纹枯病平均病情指数的曼哈顿图, 红色箭头表示2次重复均检测到的显著性SNP标记(P < 0.0001); D: 5A染色体纹枯病平均病情指数的曼哈顿图, 红色箭头表示位于Qse.hnau-5AS位点区域内的15个显著性SNP (P < 0.0001)。"

表4

在不同重复检测到的重复性SNP"

标记名称
Marker name
染色体
Chromosome
物理位置
Position
(bp)
P
P-value
表型解释率
PVE (%)
重复1
Repeat 1
重复2
Repeat 2
平均值
Average
重复1
Repeat 1
重复2
Repeat 2
平均值
Average
AX-95175867 2D 631,480,811 7.57E-05 9.29E-05 4.63 4.47
AX-111515920 5A 2,126,894 8.38E-05 7.52E-05 4.66 4.59
AX-110941640 5A 2,174,237 6.33E-05 1.34E-05 4.83 5.57
AX-109290023 5A 2,399,251 4.63E-05 8.13E-05 8.54E-06 5.01 4.59 5.83
AX-94761218 5A 2,414,945 3.36E-05 7.28E-06 2.04E-06 5.20 5.99 6.67
AX-108864997 5A 2,611,902 3.06E-05 1.17E-05 2.89E-06 5.25 5.71 6.46
AX-109296115 5A 2,645,981 2.91E-05 4.40E-05 5.98E-06 5.28 4.94 6.04
AX-110937588 5A 2,757,384 1.10E-05 9.97E-06 5.75 5.74
AX-111563568 5A 2,851,581 3.22E-05 3.38E-05 5.12 5.04
AX-94382552 5A 2,867,616 8.79E-05 2.47E-05 4.54 5.22
AX-94806410 5A 2,868,943 1.14E-05 9.00E-06 1.15E-06 5.84 5.86 7.01
AX-94730278 5A 2,872,275 1.52E-05 8.57E-06 1.30E-06 5.67 5.89 6.94
AX-111112325 5A 2,887,252 1.36E-05 3.10E-05 2.61E-06 5.73 5.14 6.52
AX-108998751 5A 2,896,546 5.65E-05 3.65E-05 5.79E-06 4.89 5.05 6.06
AX-111543629 5A 3,083,464 8.71E-05 2.89E-05 4.64 5.13
AX-95012633 5A 3,087,494 5.31E-06 1.13E-05 8.83E-07 6.29 5.73 7.16
AX-95086442 5B 4,831,294 4.62E-05 6.61E-05 8.21E-06 5.01 4.71 5.86
AX-94910429 5D 3,638,311 1.94E-05 2.12E-05 2.57E-06 5.52 5.36 6.53
AX-94976904 5D 3,638,323 3.33E-05 5.29E-06 1.40E-06 5.20 6.17 6.89
AX-95072253 5D 3,638,352 1.71E-05 1.27E-05 1.61E-06 5.60 5.66 6.81
AX-95219821 5D 3,638,433 1.27E-05 5.28E-06 5.66 6.11
AX-94719518 5D 7,001,701 2.67E-05 1.91E-05 2.90E-06 5.33 5.42 6.46

图3

5A染色体显著性SNP的单倍型分析 Hap I表示单倍型I, Hap II表示单倍型II, DI表示病情指数。不同字母表示在0.01水平下组间存在显著差异。"

图4

候选基因TaHIPL和TaHA的挖掘 A: TaHIPL和TaHA被定位在SNP位点AX-109290023和AX-108998751之间。B: 13个高可信度注释基因接种不同时间点的基因表达差异, 基于中国春参考基因组信息表明, 该定位区段含有13个高可信度注释基因, up表示与未接种(0 dpi)相比接菌后相应时间点的基因表达水平显著上调, down表示与未接种(0 dpi)相比接菌后相应时间点的基因表达水平显著下调, NA表示与未接种(0 dpi)相比接菌后相应时间点的基因表达水平无显著变化。C: TaHIPL和TaHA基因接种不同时间点的基因表达水平的荧光定量分析, 不同字母表示在0.01水平下组间存在显著差异。D: 中国春转录组数据库中TaHIPL和TaHA基因在茎基部的表达水平。红线表示TPM=6。"

图5

VIGS试验证明TaHIPL和TaHA正调控小麦纹枯病抗性 A: 野生型、空载对照、TaHIPL沉默植株以及TaHA沉默植株纹枯病侵染表型图; B和C: TaHIPL和TaHA基因的相对表达量; D: 野生型、空载对照、TaHIPL沉默植株以及TaHA沉默植株的纹枯病病情指数。不同字母表示在0.01水平下组间存在显著差异。"

[1] Wu X J, Wang J C, Wu D, Jiang W, Gao Z F, Li D S, Wu R L, Gao D R, Zhang Y. Identification of new resistance loci against wheat sharp eyespot through genome-wide association study. Front Plant Sci, 2022, 13: 1056935.
[2] Chen J, Li G H, Du Z Y, Quan W, Zhang H Y, Che M Z, Wang Z, Zhang Z J. Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Theor Appl Genet, 2013, 126: 2865-2878.
doi: 10.1007/s00122-013-2178-6 pmid: 23989648
[3] 2024年小麦春季重大病虫害防控技术方案. [2024-12-08]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450964.htm .
Technical plan for the prevention and control of major diseases and pests of wheat in spring 2024. [2024-12-08]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450964.htm (in Chinese).
[4] Liu C Y, Guo W, Zhang Q F, Fu B S, Yang Z J, Sukumaran S, Cai J, Liu Y, Zhai W L, Wu X Y, et al. Genetic dissection of adult plant resistance to sharp eyespot using an updated genetic map of Niavt14 × Xuzhou25 winter wheat recombinant inbred line population. Plant Dis, 2021, 105: 997-1005.
[5] Guo Y, Du Z Y, Chen J, Zhang Z J. QTL mapping of wheat plant architectural characteristics and their genetic relationship with seven QTLs conferring resistance to sheath blight. PLoS One, 2017, 12: e0174939.
[6] Wu X J, Cheng K, Zhao R H, Zang S J, Bie T D, Jiang Z N, Wu R L, Gao D R, Zhang B Q. Quantitative trait loci responsible for sharp eyespot resistance in common wheat CI12633. Sci Rep, 2017, 7: 11799.
doi: 10.1038/s41598-017-12197-7 pmid: 28924253
[7] Jiang Y J, Zhu F F, Cai S B, Wu J Z, Zhang Q F. Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 × Xuzhou 25. Czech J Genet Plant Breed, 2016, 52: 139-144.
[8] Su J, Zhao J J, Zhao S Q, Li M Y, Pang S Y, Kang Z S, Zhen W C, Chen S S, Chen F, Wang X D. Genetics of resistance to common root rot (spot blotch), Fusarium crown rot, and sharp eyespot in wheat. Front Genet, 2021, 12: 699342.
[9] Ma J H, Ye M M, Liu Q Q, Yuan M, Zhang D J, Li C X, Zeng Q D, Wu J H, Han D J, Jiang L N. Genome-wide association study for grain zinc concentration in bread wheat (Triticum aestivum L.). Front Plant Sci, 2023, 14: 1169858.
[10] Yao F J, Guan F N, Duan L Y, Long L, Tang H, Jiang Y F, Li H, Jiang Q T, Wang J R, Qi P F, et al. Genome-wide association analysis of stable stripe rust resistance loci in a Chinese wheat landrace panel using the 660K SNP array. Front Plant Sci, 2021, 12: 783830.
[11] Liu S Y, Wang C Y, Gou J Y, Dong Y, Tian W F, Fu L P, Xiao Y G, Luo X M, He Z H, Xia X C, et al. Genome-wide association study of ferulic acid content using 90K and 660K SNP chips in wheat. J Cereal Sci, 2022, 106: 103498.
[12] Wu J H, Wang X T, Chen N, Yu R, Yu S Z, Wang Q L, Huang S, Wang H Y, Singh R P, Bhavani S, et al. Association analysis identifies new loci for resistance to Chinese Yr26-virulent races of the stripe rust pathogen in a diverse panel of wheat germplasm. Plant Dis, 2020, 104: 1751-1762.
[13] 余蓬勃. 小麦纹枯病苗期抗性鉴定方法的改良及全基因组关联分析. 河南农业大学硕士学位论文,河南郑州, 2019.
Yu P B. Improvement of Identification Method for Resistance to Wheat Sharp Eyespot and Genome-wide Association Analysis. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[14] Fernandez-Pozo N, Rosli H G, Martin G B, Mueller L A. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant, 2015, 8: 486-488.
doi: 10.1016/j.molp.2014.11.024 pmid: 25667001
[15] 于寒松, 彭帅, 谢远红, 胡耀辉. 一种RNA提取试剂盒: TRIZOL的使用方法初探. 食品科学, 2005, 26(11): 39-42.
Yu H S, Peng S, Xie Y H, Hu Y H. Study on improvement of RNA isolating reagent kit: TRIZOL. Food Sci, 2005, 26(11): 39-42 (in Chinese with English abstract).
[16] 董恩妮, 梁青, 李利, 王林杰, 仲涛, 王永, 张红平. 实时荧光定量PCR内参基因的选择. 中国畜牧杂志, 2013, 49(11): 92-96.
Dong E N, Liang Q, Li L, Wang L J, Zhong T, Wang Y, Zhang H P. The selection of reference gene in real-time quantitative reverse transcription PCR. Chin J Anim Sci, 2013, 49(11): 92-96 (in Chinese).
[17] 韩天龙, 王敏, 李志明. QRT-PCR检测目的基因mRNA转录水平的应用. 安徽农业科学, 2011, 39: 18432-18434.
Han T L, Wang M, Li Z M. Application of QRT-PCR in the detection of mRNA transcription level. J Anhui Agric Sci, 2011, 39: 18432-18434 (in Chinese with English abstract).
[18] 吴凯朝, 黄诚梅, 李杨瑞, 杨丽涛, 吴建明. Trizol试剂法快速高效提取3种作物不同组织总RNA. 南方农业学报, 2012, 43: 1934-1939.
Wu K C, Huang C M, Li Y R, Yang L T, Wu J M. Fast and effective total RNA extraction from different tissues in 3 crops through the Trizol reagent method. J South Agric, 2012, 43: 1934-1939 (in Chinese with English abstract).
[19] McBeath J H, McBeath J. Environmental Change and Food Security in China. Duxford: Woodhead Publishing, 2010. pp 119-120.
[20] Ren Y, Yu P B, Wang Y, Hou W X, Yang X, Fan J L, Wu X H, Lv X L, Zhang N, Zhao L, et al. Development of a rapid approach for detecting sharp eyespot resistance in seedling-stage wheat and its application in Chinese wheat cultivars. Plant Dis, 2020, 104: 1662-1667.
doi: 10.1094/PDIS-12-19-2718-RE pmid: 32324096
[21] 任丽娟, 蔡士宾, 汤颋, 吴纪中, 周淼平, 颜伟, 马鸿翔, 陆维忠. 小麦纹枯病抗性QTL的SSR标记研究. 扬州大学学报(农业与生命科学版), 2004, 25(4): 16-19.
Ren L J, Cai S B, Tang T, Wu J Z, Zhou M P, Yan W, Ma H X, Lu W Z. SSR markers linked resistance QTLs to sharp eyespot (Rhizoctonia cerealis) in wheat. J Yangzhou Univ (Agric Life Sci Edn), 2004, 25(4): 16-19 (in Chinese with English abstract).
[22] 刘颖, 张巧凤, 付必胜, 蔡士宾, 蒋彦婕, 张志良, 邓渊钰, 吴纪中, 戴廷波. 小麦纹枯病抗源的遗传多样性及抗性基因位点SSR标记分析. 作物学报, 2015, 41: 1671-1681.
doi: 10.3724/SP.J.1006.2015.01671
Liu Y, Zhang Q F, Fu B S, Cai S B, Jiang Y J, Zhang Z L, Deng Y Y, Wu J Z, Dai T B. Genetic diversity of wheat germplasm resistant to sharp eyespot and geno-typing of resistance loci using SSR markers. Acta Agron Sin, 2015, 41: 1671-1681 (in Chinese with English abstract).
[23] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354-1360.
[24] Yang X, Pan Y B, Singh P K, He X Y, Ren Y, Zhao L, Zhang N, Cheng S H, Chen F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol, 2019, 19: 153.
doi: 10.1186/s12870-019-1758-2 pmid: 31014249
[25] Liu J, Cobertera D C, Zemetra R S, Mundt C C. Identification of quantitative trait loci for resistance to wheat sharp eyespot in the Einstein × Tubbs recombinant inbred line population. Plant Dis, 2023, 107: 820-825.
[26] 李於亭, 熊宏春, 郭会君, 赵林姝, 谢永盾, 古佳玉, 李慧园, 赵世荣, 丁玉萍, 方正武, 等. 小麦抽穗期微效QTL精细定位与候选基因分析. 第二十届中国作物学会学术年会, 2023.
Li Y T, Xiong H C, Guo H J, Zhao L S, Xie Y D, Gu J Y, Li H Y, Zhao S R, Ding Y P, Fang Z W, et al. Fine mapping of micro-effect QTLs at heading stage and analysis of candidate genes in wheat. The 20th Annual meeting of the Crop Science Society of China, 2023 (in Chinese).
[27] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 等. 小麦茎秆性状的转录组测序及全基因组关联分析. 作物学报, 2024, 50: 2187-2206.
doi: 10.3724/SP.J.1006.2024.31076
Yu H L, Wu W X, Pei X X, Liu X Y, Deng G W, Li X C, Zhen S C, Wang J S, Zhao Y T, Xu H X, et al. Transcriptome sequencing and genome-wide association study of wheat stem traits. Acta Agron Sin, 2024, 50: 2187-2206 (in Chinese with English abstract).
[28] Li M T, Guo P, Nan N, Ma A, Liu W X, Wang T J, Yun D J, Xu Z Y. Plasma membrane-localized H+-ATPase OsAHA3 functions in saline-alkaline stress tolerance in rice. Plant Cell Rep, 2023, 43: 9.
[29] Kim C Y, Park J Y, Choi G, Kim S, Vo K T X, Jeon J S, Kang S, Lee Y H. A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol Plant Pathol, 2022, 23: 400-416.
[1] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[2] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[3] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[4] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[5] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[6] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[7] 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086.
[8] 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047.
[9] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[10] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[11] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[12] 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813.
[13] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[14] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[15] 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!