• •
马婷婷1,2,**,郭晓江1,2,**,李豪1,邓梅1,蒲至恩3,李伟3,张亚洲1,王凤涛4,崔凤娟5,魏育明1,2,王际睿1,2,蒋云峰1,2,*,陈国跃1,2,*
MA Ting-Ting1,2,**,GUO Xiao-Jiang1,2,**,LI Hao1,DENG Mei1,PU Zhi-En3,LI WeZHANG Ya-Zhou1,WANG Feng-Tao4,CUI Feng-Juan5,WEI Yu-Ming1,2,WANG Ji-Rui1,2,JIANG Yun-Feng1,2,*,CHEN Guo-Yue1,2,*
摘要:
四川麦区属于我国西南最重要的早熟冬麦区,单位面积有效穗数(或穗容量或单株有效分蘖)成为该麦区产量进一步提升的关键。来自湖北当阳的小麦农家种“孝感麦”具有稳定的条锈病、穗发芽抗性及多有效分蘖、多花多实等突出特点,已成为当前四川麦区小麦种质改良和创新的潜在重要基因源。在产量构成因子中,单位面积有效穗数低成为当前限制小麦品系蜀麦753产量提升的关键因子。为了实现蜀麦753的产量突破与结构模式优化及产量与抗病、耐逆协同改良,本研究以多有效分蘖兼具强抗穗发芽特性且携带成株期条锈病抗性基因的小麦农家种“孝感麦”为供体、以携带全生育期条锈病抗性基因且综合性状良好的育成品系蜀麦753为受体,通过杂交、回交及连续多代自交并结合育种目标性状“分段式”选育技术,选育获得了178个蜀麦753/孝感麦育种应用高代稳定品系,旨在提升有效分蘖数量与穗容量的同时转育和聚合抗条锈病和穗发芽基因位点。表型鉴定结果表明,受体亲本蜀麦753的有效分蘖、穗粒数和小穗数改良效果显著,所有高世代品系有效分蘖均高于受体亲本,仅有4个品系小穗数低于受体亲本,平均穗粒数超过70粒。产量相关性状的相关性和通径分析发现,供试品系群体中有效分蘖数量与产量呈极显著正相关关系,表明利用“孝感麦”对蜀麦753进行穗容量(或有效穗、单位面积穗数)进行遗传改良对提升产量性状具有显著效果。结合表型和基因型鉴定,获得了2份产量潜力超过8250 kg hm-2的突破性新品系。结合条锈病和穗发芽基因型分析,从供试品系中筛选出1份携带Yr18+Yr24/26+Yr15且对条锈病具有广谱抗性和9份携带TaMyb10抗穗发芽等位基因优异新品系。本研究表明,利用小麦农家种“孝感麦”通过育种目标性状“分段式”选育技术为改变四川麦区小麦新品系“蜀麦753”的产量结构、实现产量与抗病耐逆协同改良提供了有效技术方案。
[1] Villa T, Maxted N, Scholten M, Ford-Lloyd B. Defining and identifying crop landraces. Plant Genet Resour-C, 2005, 3: 373–384. [2] 李春辉, 王天宇, 黎裕. 基于地方品种的种质创新: 现状及展望. 植物资源遗传学报, 2019, 20: 1372–1379. Li C H, Wang T Y, Li Y. Germplasm innovation of landraces: Current status and future prospect. J Plant Genet Resour, 2019, 20: 1372–1379 (in Chinese with English abstract). [3] 中国农学会遗传资源学会. 中国作物遗传资源. 北京: 中国农业出版社, 1994. pp 27–46. Society of Crop Genetic Resources, Chinese Association of Agricultural Sciences. Crop genetic resources in China. Beijing: China Agriculture Press, 1994. pp 27–46 (in Chinese). [4] 董玉琛, 郑殿升. 中国作物及其野生近缘植物: 粮食作物卷. 北京: 中国农业出版社, 2006. pp 1–29. Dong Y C, Zheng D S. Crops and their wild relatives in China: grain crops. Beijing: China Agriculture Press, 2006. pp 1–29 (in Chinese). [5] 郑殿升, 杨庆文, 刘旭. 中国作物种质资源多样性. 植物遗传资源学报, 2011, 12: 497–500. Zheng D S, Yang Q W, Liu X. Diversity of crop germplasm resources in China. J Plant Genet Resour, 2011, 12: 497–500 (in Chinese with English abstract). [6] 刘旭. 中国作物栽培历史的阶段划分和传统农业形成与发展. 中国农史, 2012, 31(2): 3–16. Liu X. Stage division of Chinese crop cultivation history and formation of traditional agriculture. Agric Hist China, 2012, 31(2): 3–16 (in Chinese with English abstract). [7] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003 (in Chinese). [8] 刘旭. 作物种质资源学. 北京: 高等教育出版社, 2024. pp 3–8. Liu X. Crop Germplasm Resources Science. Beijing: Higher Education Press, 2024. pp 3–8 (in Chinese). [9] 刘旭, 郑殿升, 董玉琛, 朱德蔚, 方嘉禾, 费砚良, 贾敬贤, 蒋尤泉, 杨庆文, 王述民. 中国农作物及其野生近缘植物多样性研究进展. 植物遗传资源学报, 2008, 9: 411–416. Liu X, Zheng D S, Dong Y C, Zhu D W, Fang J H, Fei Y L, Jia J X, Jiang Y Q, Yang Q W, Wang S M. Diversity assessment of crops and their wild relatives in China. J Plant Genet Resour, 2008, 9: 411–416 (in Chinese with English abstract). [10] 白彦明, 李龙, 王绘艳, 柳玉平, 王景一, 毛新国, 昌小平, 孙黛珍, 景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析. 作物学报, 2019, 45: 1468–1477. Bai Y M, Li L, Wang H Y, Liu Y P, Wang J Y, Mao X G, Chang X P, Sun D Z, Jing R L. Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat. Acta Agron Sin, 2019, 45: 1468–1477 (in Chinese with English abstract). [11] 李小军. 小麦骨干亲本碧蚂4号的遗传效应分析. 中国农业科学院博士学位论文, 北京, 2009. Li X J. Analysis of Genetic Effects of Wheat (Triticum aestivum L.) Variety Bima 4 as a Founder parent. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2009 (in Chinese with English abstract). [12] 张玲丽. 中国小麦地方品种遗传多样性与遗传异质性研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2006. Zhang L L. Genetic Diversity and Genetic Heterogeneity in Chinese Wheat Landraces. PhD Dissertation of Northwest Agriculture and Forestry University, Yangling, Shaanxi, China, 2006 (in Chinese with English abstract). [13] 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良. 小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析. 作物学报, 2013, 39: 827–836. Chen G Y, Liu W, He Y J, Gou L L, Yu M, Chen S S, Wei Y M, Zheng Y L. Specific loci for adult-plant resistance to stripe rust in wheat founder parent fan 6 and their genetic dissection in its derivatives. Acta Agron Sin, 2013, 39: 827–836 (in Chinese with English abstract). [14] 李邦发. 四川小麦育种骨干亲本的应用与种质资源创新. 科技导报, 2015, 33(13): 66–70. Li B F. Application of wheat corner stone parents and innovation of germplasm resource in Sichuan province. Sci Technol Rev, 2015, 33(13): 66–70 (in Chinese with English abstract). [15] 颜济. 五十年四川小麦育种研究的回顾与前瞻. 四川农业大学学报, 1999, 17(1): 108–113. Yan J. History and prospect of study on wheat breeding of fifty years in Sichuan. J Sichuan Agric Univ, 1999, 17(1): 108–113 (in Chinese with English abstract). [16] 饶世达, 蒲宗君, 刘仲齐. 骨干亲本的育成和利用对四川小麦育种的启示. 西南农业学报, 1998, 11(增刊2): 35–37. Rao S D, Pu Z J, Liu Z Q. Review of wheat breeding in Sichuan province based on the case of two best resources. Southwest China J Agric Sci, 1998, 11(S2): 35–37 (in Chinese with English abstract). [17] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215. He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract). [18] 李振声. 我国小麦育种的回顾与展望. 中国农业科技导报, 2010, 12(2): 1–4. Li Z S. Retrospect and prospect of wheat breeding in China. J Agric Sci Technol, 2010, 12(2): 1–4 (in Chinese with English abstract). [19] 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 杨恩年, 蒋云, 刘于斌, 王相权, 等. 四川省小麦育成品种系谱分析及发展进程. 遗传, 2019, 41: 599–610. Zheng J M, Luo J T, Wan H S, Li S Z, Yang M Y, Li J, Yang E N, Jiang Y, Liu Y B, Wang X Q, et al. Pedigree and development of wheat varieties in Sichuan province. Hereditas, 2019, 4: 599–610 (in Chinese with English abstract). [20] Cheng S F, Feng C, Wingen L U, Cheng H, Riche A B, Jiang M, Leverington-Waite M, Huang Z J, Collier S, Orford S, et al. Harnessing landrace diversity empowers wheat breeding. Nature, 2024, 632: 823–831. [21] 金善宝. 中国小麦品种及其系谱. 北京: 农业出版社, 1983. Jin S B. Chinese Wheat and Its Pedigree. Beijing: Agriculture Press, 1983 (in Chinese). [22] 余遥. 四川小麦. 成都: 四川科学技术出版社, 1998. Yu Y. Sichuan Wheat. Chengdu: Sichuan Science and Technology Press, 1998 (in Chinese). [23] Zhou Y, Tang H, Cheng M P, Dankwa K O, Chen Z X, Li Z Y, Gao S, Liu Y X, Jiang Q T, Lan X J, et al. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces. Front Plant Sci, 2017, 8: 401 [24] 姚方杰. 小麦种质资源条锈病抗性表型鉴定及其全基因组关联分析. 四川农业大学博士学位论文, 四川雅安, 2022. Yao F J. Identification and Genome-wide Association Studies of Stripe Rust Resistance in Wheat Germplasm. PhD Dissertation of Sichuan: Sichuan Agricultural University, Ya’an, Sichuan, China, 2022 (in Chinese with English abstract). [25] 陈国跃, 蒋云峰, 李豪, 张潇月, 管方念 ,王际睿, 魏育明, 郑有良. 一种利用小麦农家种进行条锈病抗性与产量协同改良创制新种质的育种方法. 中国专利: CN 202311276757.9, 2023-10-06. Chen G Y, Jiang Y F, Li H, Zhang X Y, Guan F N, Wang J R, Wei Y M, Zheng Y L. A breeding method for creating new germplasm with coordinated improvement of stripe rust resistance and yield using wheat landraces. Chinese Patent: CN 202311276757.9, 2023-10-06 (in Chinese). [26] Chen X M, Jones S S, Line R F. Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 Loci. Phytopathology, 1995, 86: 1228‒1233. [27] 中华人民共和国农业农村部. 中华人民共和国农业行业标准. 小麦抗穗发芽性检测方法: NY/T 1739–2009, 2009. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Agricultural Industry Standard of the People’s Republic of China. Determination of pre-harvest sprouting in wheat: NY/T 1739–2009, 2009 (in Chinese). [28] 李立会, 李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 81‒83. Li L H, Li X Q. Descriptors and Data Standard for Wheat (Triticum aestivum L.). Beijing: China Agriculture Press, 2006. pp 81‒83 (in Chinese). [29] Hill‐Ambroz K L, Brown‐Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci, 2002, 42: 2088‒2091. [30] Klymiuk V, Yaniv E, Huang L, et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun, 2018, 9: 1–12. [31] Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance geneYr26. Euphytica, 2008, 159: 359–366. [32] Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119: 889–898. [33] Lang J, Jiang H Y, Cheng M P, Wang M W, Gu J, Dong H X, Li M L, Guo X J, Chen Q, Wang J R. Variation of TaMyb10 and their function on grain color and pre-harvest sprouting resistance of wheat. Plant J, 2024, 118: 1388–1399. [34] Wang M Y, Xu M R, Wang F T, Shah S J A, Feng J, Lin R M, Xu S C. Characterization and validation of QTLs for adult plant stripe rust resistance in Chinese wheat landrace Dabaimai. Cereal Res Commun, 2021, 49: 91–98. [35] Pakeerathan K, Bariana H, Qureshi N, Wong D, Hayden M, Bansal U. Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet, 2019, 132: 3169–3176. [36] Yao Q, He M M, Hou L, Yan J H, Guo Q Y, Jing J X, Kang Z S. Genetic analysis and molecular mapping of stripe rust resistance genes in Chinese native wheat (Triticum aestivum) Lankao 5. Australas Plant Path, 2017, 46: 213–221. [37] Ma D F, Li Q, Tang M S, Chao K X, Li J C, Wang B T, Jing J X. Mapping of gene conferring adult-plant resistance to stripe rust in Chinese wheat landrace Baidatou. Mol Breed, 2015, 35: 157–165. [38] Lan C X, Liang S S, Zhou X C, Zhou G, Lu Q L, Xia X C, He Z H. Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology, 2010, 100: 313–318. [39] Chao K X, Wu C J, Li J, Wang W L, Wang B T, Li Q. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials. J Integr Agric, 2022, 21: 2305–2318. [40] Cao J, Xu Z B, Fan X L, Zhou Q, Ji G S, Wang F, Feng B, Wang T. Genetic mapping and utilization analysis of stripe rust resistance genes in a Tibetan wheat (Triticum aestivum L.) landrace Qubaichun. Genet Resour Crop Evol, 2020, 6: 1765–1775. [41] Hu C Y, Wang F T, Feng J, Sun C, Guo J Y, Lang X W, Hu J H, Bai B, Zhang W T, Li H J, et al. Identification and molecular mapping of YrBm for adult plan resistance to stripe rust in Chinese wheat landrace Baimangmai. Theor Appl Genet, 2022, 135: 2655–2664. [42] Wang Z, Ren J D, Du Z Y, Che M Z, Zhang Y B, Quan W, Jiang X, Ma Y, Zhao Y, Zhang Z J. Identification of a major QTL on chromosome arm 2AL for reducing yellow rust severity from a Chinese wheat landrace with evidence for durable resistance. Theor Appl Genet, 2019, 132: 457–471. [43] Huang X Q, Wang L X, Xu M X, Röder M S. Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 858–865. [44] Huang X Q, Röder M S. High-density genetic and physical bin mapping of wheat chromosome 1D reveals that the powdery mildew resistance gene Pm24 is located in a highly recombinogenic region. Genetic, 2011, 139: 1179–1187. [45] Xiao M, Song F, Jiao J, Wang X, Xu H, Li H. Identification of the gene pm47, on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet, 2013, 126: 1397–1403. [46] Fu B, Chen Y, Li N, Ma H, Kong Z, Zhang L, Jia H, Ma Z. Pmx: a recessive powdery mildew resistance gene at the pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet, 2013, 126: 913–921. [47] Xu X D, Li Q, Ma Z H, Fan J, Zhou Y L. Molecular mapping of powdery mildew resistance gene PmSGD in Chinese wheat landrace Shangeda using RNA-seq with bulk segregant analysis. Mol Breed, 2018, 38: 23. [48] 侯明生, 黄俊斌. 农业植物病理学. 北京: 科学出版社, 2006. pp 60–65. Hou M S, Huang J B. Agricultural Plant Pathology. Beijing: Science Press, 2006. pp 60–65 (in Chinese). [49] 罗江陶, 郑建敏, 邓清燕, 刘培勋, 蒲宗君. 2000–2020年四川小麦育成品种产量增益分析. 中国农业科学, 2024, 57: 3945–3956. Luo J T, Zheng J M, Deng Q Y, Liu P X, Pu Z J. Yield gain analysis of wheat varieties in Sichuan from 2000 to 2020. Sci Agric Sin, 2024, 57: 3945–3956 (in Chinese with English abstract). [50] 李伟. 国审小麦品种川农16的选育与利用. 四川: 四川科学技术出版社, 2024. pp 1–2. Li W. Breeding and Utilization of Nationally Approved Wheat Variety Chuannong 16. Sichuan: Sichuan Science and Technology Press, 2024. pp 1–2 (in Chinese).
|
[1] | 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127. |
[2] | 胡亮亮, 周洪妹, 王晓磊, 王素华, 李彩菊, 魏云山, 王丽侠, 程须珍, 陈红霖. 小豆产量相关性状的基因型与环境互作效应及稳定性分析[J]. 作物学报, 2025, 51(10): 2581-2594. |
[3] | 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178. |
[4] | 朱明昆, 包俊浩, 庞菁璐, 周诗绮, 方忠艳, 郑文, 张亚洲, 吴丹丹. 纤毛鹅观草-普通小麦高抗条锈病多年生属间杂种F1的创制及鉴定[J]. 作物学报, 2024, 50(6): 1406-1420. |
[5] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[6] | 张馨月, 秦阳, 李瑞, 黄全生, 王逸茹, 郑军. 玉米穗发芽突变体vp2的基因克隆及功能研究[J]. 作物学报, 2024, 50(11): 2712-2719. |
[7] | 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31. |
[8] | 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372. |
[9] | 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391. |
[10] | 姜骁, 许静, 潘丽娟, 陈娜, 王通, 江晓东, 殷祥贞, 杨珍, 禹山林, 迟晓元. 花生产量相关性状与气象因子多环境相关性分析[J]. 作物学报, 2023, 49(11): 3110-3121. |
[11] | 徐云碧, 王冰冰, 张健, 张嘉楠, 李建生. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报, 2022, 48(8): 1853-1870. |
[12] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[13] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[14] | 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323. |
[15] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
|