• •
田甲春,葛霞,李守强,李梅,田世龙*,张亚倩,程建新,李玉梅
TIAN Jia-Chun, GE Xia,LI Shou-Qiang,LI Mei,TIAN Shi-Long*,ZHANG Ya-Qian,CHENG Jian-Xin,LI Yu-Mei
摘要:
为探讨低O2高CO2贮藏环境延缓马铃薯块茎的衰老机制,本研究以马铃薯陇薯17号为研究对象,通过测定营养品质、外观指标及生理指标,并结合贮藏中期(60 d)和末期(150 d)的转录组学分析,从表型水平和转录水平研究了马铃薯对低O2高CO2贮藏环境的响应,揭示了马铃薯贮藏的分子调控机制。低O2高CO2贮藏环境延缓了马铃薯在低温贮藏期间淀粉含量的下降及还原糖含量的上升,抑制了薯块发芽和失水,保持了良好的薯皮色泽,抑制了PAL活性、POD活性的上升,并且对3种内源激素有积极的调控作用。与对照相比,贮藏中期共发现741个差异基因,其中上调基因378个,下调基因363个。贮藏至末期时,差异基因总数上升为1658个,其中上调基因为1211个,下调基因为447个。通过生物信息学发现,低O2高CO2贮藏环境显著调控与苯丙烷生物合成代谢、淀粉和蔗糖代谢、植物激素信号转导及MPAK信号转导相关的代谢途径。综上所述,本研究为马铃薯的气调贮藏提供了理论基础,为进一步研究分子机制提供了理论依据。
[1] Thoma J L, Cantrell C L, Zheljazkov V D. Effects of essential oil fumigation on potato sprouting at room-temperature storage. Plants, 2022, 11: 3109. [2] 张益瑄, 马宇, 王童童, 盛苏奥, 宋家凤, 吕钊彦, 朱晓彪, 侯华兰. 马铃薯DIR家族全基因组鉴定及表达模式分析. 生物技术通报, 2025, 41(3): 123–136. Zhang Y X, Ma Y, Wang T T, Sheng S A, Song J F, Lyu Z Y, Zhu X B, Hou H L. Genome-wide identification and expression profiles of DIR gene family in potato. Biotechnol Bull, 2025, 41(3): 123–136 (in Chinese with English abstract). [3] Li M, Zheng X Y, Zhang X J, Tian S L, Chen J X, Li S Q, Ge X, Tian J C. Inhibitory impact of Chlorine dioxide on potato tuber sprouting via inducing oxidative stress. Sci Hortic, 2024, 330: 113102. [4] Thoma J L, Cantrell C L, Tamang P, Zheljazkov V D. Determining the optimum mixture of three essential oils for potato sprout suppression at room temperature storage. Front Plant Sci, 2023, 14: 1199117. [5] 俞婷, 黄丹丹, 朱炎辉, 杨梅宏, 艾菊, 高冬丽. 马铃薯Stpatatin 05基因转录调控因子筛选及互作验证. 生物技术通报, 2025, 41(3): 137–145. Yu T, Huang D D, Zhu Y H, Yang M H, Ai J, Gao D L. Screening and interaction verification of transcription factors stpatatin 05 gene in potato. Biotechnol Bull, 2025, 41(3): 137–145 (in Chinese with English abstract). [6] 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析. 作物学报, 2024, 50: 1503–1513. Zhao N, Liu Y X, Zhang C S, Shi Y. Transcriptomic analysis of differences in the starch content of different potatoes. Acta Agron Sin, 2024, 50: 1503–1513 (in Chinese with English abstract). [7] Kulakova A V, Efremov G I, Shchennikova A V, Kochieva E Z. Dependence of the content of starch and reducing sugars on the level of expression of the genes of β-amylases StBAM1 and StBAM9 and the amylase inhibitor StAI during long-term low-temperature storage of potato tubers. Vavilovskii Zhurnal Genet Selektsii, 2022, 26: 507–514. [8] Datir S S, Regan S. Role of alkaline/neutral invertases in postharvest storage of potato. Postharvest Biol Technol, 2022, 184: 111779. [9] Herman D J, Knowles L O, Knowles N R. Low oxygen storage modulates invertase activity to attenuate cold-induced sweetening and loss of process quality in potato (Solanum tuberosum L.). Posth Biol Technol, 2016, 121: 106–117. [10]田甲春, 田世龙, 李守强, 葛霞, 李梅, 程建新. 低O2高CO2贮藏环境对马铃薯块茎淀粉-糖代谢的影响. 核农学报, 2021, 35: 1832–1840. Tian J C, Tian S L, Li S Q, Ge X, Li M, Cheng J X. Effects of low oxygen and high carbon dioxide storage environment on starch-glucose metabolism of potato tubers. J Nucl Agric Sci, 2021, 35: 1832–1840 (in Chinese with English abstract). [11]田甲春, 田世龙, 李守强, 葛霞, 李梅, 程建新, 张辉元. 低氧高二氧化碳贮藏环境对马铃薯品质的影响. 食品科学, 2020, 41(15): 275–281. Tian J C, Tian S L, Li S Q, Ge X, Li M, Cheng J X, Zhang H Y. Effects of low oxygen and high carbon dioxide storage environment on potato quality. Food Sci, 2020, 41(15): 275–281 (in Chinese with English abstract). [12] 于弘弢. 微环境气调对蓝莓品质变化的调控作用. 辽宁大学硕士学位论文, 辽宁沈阳, 2021. Yu H T. Regulation of Quality of Blueberries by Microenvironmental Modified Atomosphere Packing. MS Thesis of Liaoning University, Shenyang, Liaoning, China, 2021 (in Chinese with English abstract). [13] Zhang J Y, Jiang H, Li Y T, Wang S J, Wang B, Xiao J S, Cao Y P. Transcriptomic and physiological analysis reveals the possible mechanism of ultrasound inhibiting strawberry (Fragaria × Ananassa Duch.) postharvest softening. Front Nutr, 2022, 9: 1066043. [14] 李可昕, 韩晨瑞, 孙敏敏, 曹建康. 基于转录组学分析1-MCP与EBR联合处理对鲜黄花菜采后衰老的影响. 食品科学, 2024, 45(4): 279–288. Li K X, Han C R, Sun M M, Cao J K. Transcriptomic analysis of the effect of combined treatment with 1-methylcyclopropene and 2, 4-epibrassionolide on the postharvest senescence of fresh daylily (Hemerocallis citrina). Food Sci, 2024, 45(4): 279–288 (in Chinese with English abstract). [15] 洪晨, 郭丽娜, 张莘妍, 欧阳宁宁, 吴平, 马海乐. 基于转录组学分析超声胁迫诱导鲜切紫甘蓝酚类物质合成机制. 食品科学, 2025, 46(14): 37–48. Hong C, Guo L N, Zhang X Y, Ou-Yang N N, Wu P, Ma H L. Transcriptomics analysis to elucidate the mechanisms underlying the synthesis of phenolic compounds in fresh-cut red cabbages under ultrasound stress. Food Sci, 2025, 46(14): 37–48(in Chinese with English abstract). [16] Dobránszki J, Hidvégi N, Gulyás A, Tóth B, Teixeira da Silva J A. Abiotic stress elements in in vitro potato (Solanum tuberosum L.) exposed to air-based and liquid-based ultrasound: a comparative transcriptomic assessment. Prog Biophys Mol Biol, 2020, 158: 47–56. [17] 杨双鹤, 申挥, 罗海波, 苏火生, 邹琴, 俞源河, 陈亚男, 余元善, 胡腾根, 董霞, 等. 近冰温贮藏在延缓甜龙竹笋采后木质化衰老中的作用. 食品科学, 2024, 45(17): 216–225. Yang S H, Shen H, Luo H B, Su H S, Zou Q, Yu Y H, Chen Y N, Yu Y S, Hu T G, Dong X, et al. Effect of near-freezing temperature storage on delaying postharvest lignification of Dendrocalamus brandisii shoots. Food Sci, 2024, 45(17): 216–225 (in Chinese with English abstract). [18] 葛霞, 徐瑞, 李梅, 田甲春, 李守强, 程建新, 田世龙. 香芹酮对马铃薯种薯发芽的调控机制. 中国农业科学, 2020, 53: 4929–4939. Ge X, Xu R, Li M, Tian J C, Li S Q, Cheng J X, Tian S L. Regulation mechanism of carvone on seed potato sprouting. Sci Agric Sin, 2020, 53: 4929–4939 (in Chinese with English abstract). [19] Rinaldo D, Sotin H, Pétro D, Le-Bail G, Guyot S. Browning susceptibility of new hybrids of yam (Dioscorea alata) as related to their total phenolic content and their phenolic profile determined using LC-UV-MS. LWT Food Sci Technol, 2022, 162: 113410. [20] 莫小引, 管兰兰, 汤鹏宇, 王宜崧, 孟繁博, 黄道梅, 刘义, 安诗语, 林茂. 基于非靶向代谢组学分析红托竹荪干品褐变过程中的代谢物变化. 食品与发酵工业, 网络首发[2025-04-29], https://doi.org/10.13995/j.cnki.11-1802/ts.042315. Mo X Y, Guan L L, Tang P Y, Wang Y S, Meng F B, Huang D M, Liu Y, An S Y, Lin M. Metabolite changes in the browning process of Dictyophora rubrovolvata dry products based on non-targeted metabolomic analysis, Food Ferm Ind, Published online [2025-04-29], https://doi.org/10.13995/j.cnki.11-1802/ts.042315 (in Chinese with English abstract). [21] Zheng X Y, Li M, Tian S L, Li S Q, Chen J X, Zhang X J, Wu X H, Ge X, Tian J C, Mu Y W, et al. Integrated analysis of transcriptome and metabolome reveals the mechanism of chlorine dioxide repressed potato (Solanum tuberosum L.) Tuber sprouting. Front Plant Sci, 2022, 13: 887179. [22] 吕春娟, 刘东, 许奕雯, 田甲春, 田世龙, 葛霞. 3-癸烯-2-酮对马铃薯的抑芽作用机理. 核农学报, 2024, 38: 1125–1136. Lyu C J, Liu D, Xu Y W, Tian J C, Tian S L, Ge X. The sprout inhibiting mechanism of 3-Decene-2-One on potato. J Nucl Agric Sci, 2024, 38: 1125–1136 (in Chinese with English abstract). [23] 宋雪微. 加工型马铃薯的品质差异及低温糖化特性研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022. Song X W. Study on Quality Difference and Low-temperature Sweetening Characteristics of Processed Potato. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022 (in Chinese with English abstract). [24] Li J X, Ishii T, Yoshioka M, Hino Y, Nomoto M, Tada Y, Yoshioka H, Takahashi H, Yamauchi T, Nakazono M. CDPK5 and CDPK13 play key roles in acclimation to low oxygen through the control of RBOH-mediated ROS production in rice. Plant Physiol, 2024, 197: kiae293. [25] Matsuura-Endo C, Kobayashi A, Noda T, Takigawa S, Yamauchi H, Mori M. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J Plant Res, 2004, 117: 131–137. [26] 阳芳, 何高镜, 郭圣军, 刘清, 胡新喜, 贺利雄. 影响马铃薯块茎低温糖化的植物激素相关基因的表达. 湖南农业大学学报(自然科学 版), 2022, 48(2): 160–167. Yang F, He G J, Guo S J, Liu Q, Hu X X, He L X. Expression analysis of potato cold-induced sweetening related genes in phytohormone pathway. J Hunan Agric Univ (Nat Sci), 2022, 48(2): 160–167 (in Chinese with English abstract). [27] Min T, Xie J, Zheng M L, Yi Y, Hou W F, Wang L M, Ai Y W, Wang H X. The effect of different temperatures on browning incidence and phenol compound metabolism in fresh-cut Lotus (Nelumbo nucifera G.) root. Posth Biol Technol, 2017, 123: 69–76. [28] 李文博, 张新祺, 赵亚婷, 田瑞, 吴颖颉, 范雅青, 张璇, 李佳欣, 朱璇. 采前喷施壳寡糖对采后西梅黑斑病的控制. 食品科学, 2025, 46(7): 283–291. Li W B, Zhang X Q, Zhao Y T, Tian R, Wu Y J, Fan Y Q, Zhang X, Li J X, Zhu X. Control of postharvest prune black spot disease by preharvest chitosan oligosaccharide spraying. Food Sci, 2025, 46(7): 283–291 (in Chinese with English abstract). [29] 韦雪. 气调包装和脉冲强光对鲜切马铃薯褐变及营养品质的影响. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2022. Wei X. Effects of Modified Atmosphere Packaging and Pulsed Light on Browning and Nutritional Quality of Fresh-cut Potatoes. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2022 (in Chinese with English abstract). [30] 李云云, 赵春霞, 程曦, 李婧, 张敏. 高氧气调包装对双孢蘑菇微生物及其品质的影响. 食品科学, 2016, 37(2): 261–265. Li Y Y, Zhao C X, Cheng X, Li J, Zhang M. Effects of high-oxygen modified atmosphere packaging on microorganisms and quality maintenance in Agaricus bisporus. Food Sci, 2016, 37(2): 261–265 (in Chinese with English abstract). [31] 张睿, 王秀娟, 高伟. 植物激素对次生代谢产物的调控研究. 中国中药杂志, 2020, 45: 4205–4210. Zhang R, Wang X J, Gao W. Regulation mechanism of plant hormones on secondary metabolites. China J Chin Mater Med, 2020, 45: 4205–4210 (in Chinese with English abstract). [32] 朱迪, 王冰冰, 贺苗苗. 马铃薯GH3基因家族成员的鉴定及表达分析. 农业生物技术学报, 2025, 33: 498–512. Zhu D, Wang B B, He M M. Identification and expression analysis of GH3 gene family members in potato (Solanum tuberosum). J Agric Biotechnol, 2025, 33: 498–512 (in Chinese with English abstract). [33] Sonnewald S, Sonnewald U. Regulation of potato tuber sprouting. Planta, 2014, 239: 27–38. [34] Boivin M, Bourdeau N, Barnabé S, Desgagné-Penix I. Sprout suppressive molecules effective on potato (Solanum tuberosum) tubers during storage: a review. Am J Potato Res, 2020, 97: 451–463. [35] 毛林莉. 马铃薯低温贮藏及回温过程糖代谢机制研究. 武汉轻工大学硕士学位论文, 湖北武汉, 2023. Mao L L. Study of Sugar Metabolism During Low Temperature Storage and Rewarming of Potato. MS Thesis of Wuhan Polytechnic University, Wuhan, Hubei, China, 2023 (in Chinese with English abstract). [36] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247–258. [37] Ding Z J, Yan J Y, Li G X, Wu Z C, Zhang S Q, Zheng S J. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J, 2014, 79: 810–823. [38] 陈彩锦, 马琳, 包明芳, 蒋庆雪, 张国辉, 张尚沛, 高婷, 王学敏, 刘文辉. WRKY基因家族在植物中的研究进展. 草地学报, 2025, 33: 2059–2069. Chen C J, Ma L, Bao M F, Jiang Q X, Zhang G H, Zhang S P, Gao T, Wang X M, Liu W H. Research Progress on the Role of WRKY Family Genes in Plants. Acta Agrest Sin, 2025, 33: 2059–2069 (in Chinese with English abstract) |
[1] | 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849. |
[2] | 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735. |
[3] | 杨双, 白磊, 郭华春, 缪亚生, 李俊. 马铃薯叶片表皮毛形态特征、类型与发育过程[J]. 作物学报, 2025, 51(6): 1582-1598. |
[4] | 徐杰, 夏露露, 唐振三, 李文丽, 赵甜甜, 程李香, 张峰. 马铃薯块茎蒸制和烘焙后嗅味品质分析[J]. 作物学报, 2025, 51(5): 1409-1420. |
[5] | 赵喜娟, 张帆, 刘圣宣, 覃骏, 陈惠兰, 林原, 罗红兵, 刘易, 宋波涛, 胡新喜, 王恩爽. 4种马铃薯内源激素提取方法优化及其在块茎解除休眠过程中的含量分析[J]. 作物学报, 2025, 51(4): 1050-1060. |
[6] | 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727. |
[7] | 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析[J]. 作物学报, 2025, 51(1): 247-259. |
[8] | 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309. |
[9] | 周洪源, 杨慧芹, 罗威, 石振明, 马玲. 马铃薯绿原酸调控因子的筛选与功能鉴定[J]. 作物学报, 2024, 50(7): 1740-1749. |
[10] | 刘园园, 董建科, 应静文, 梅文祥, 程刚, 郭晶晶, 焦文标, 宋波涛. 利用野生种Solanum boliviense创制马铃薯抗寒种质[J]. 作物学报, 2024, 50(6): 1384-1393. |
[11] | 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466. |
[12] | 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513. |
[13] | 李万, 李成, 程敏, 吴芳. 磷转运蛋白StPHO1.2提高马铃薯耐热性[J]. 作物学报, 2024, 50(2): 394-402. |
[14] | 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471. |
[15] | 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894. |
|