欢迎访问作物学报,今天是

作物学报

• •    

基于WGCNA发掘茶树糖苷类香气前体含量性状相关的候选基因

张力岚,杨军,王让剑*   

  1. 福建省农业科学院茶叶研究所 / 国家茶树改良中心福建分中心,福建福州350013
  • 收稿日期:2025-07-02 修回日期:2025-09-10 接受日期:2025-09-10 网络出版日期:2025-09-23
  • 通讯作者: 王让剑, E-mail: wangrj@faas.cn
  • 基金资助:
    本研究由福建省属公益类科研院所基本科研专项-竞争性项目(2024R1075), 福建省农业科学院科技专项(ZYTS202408)和福建省茶产业技术体系项目(闽农科教(2023)16号)资助。

Identification of candidate genes related to glycoside aroma precursor content in tea plant using WGCNA

ZHANG Li-Lan,YANG Jun,WANG Rang-Jian*   

  1. Tea Research Institute, Fujian Academy of Agricultural Sciences / Fujian Branch, National Center for Tea Improvement, Fuzhou 350013, Fujian, China
  • Received:2025-07-02 Revised:2025-09-10 Accepted:2025-09-10 Published online:2025-09-23
  • Contact: 王让剑, E-mail: wangrj@faas.cn
  • Supported by:
    This study was supported by the Basic Research Projects of Public Welfare Research Institutes in Fujian Province - Competitive Projects (2024R1075), the Science and Technology Specific Project of Fujian Academy of Agricultural Sciences (ZYTS202408), and the Fujian Tea Industry Technology System (Fujian Agricultural Science and Education (2023) No. 16).

摘要: 通过分析秋季茶树不同品种新梢的转录组信息,可以挖掘调控糖苷类香气前体(glycoside aroma precursor, GAP)合成的关键基因,为研究茶树GAP的合成机制和指导高GAP含量品种选育提供理论参考。本研究以茶树14个品种的新梢为研究材料,测定8种不同类型的GAP含量,利用加权基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)转录组数据与新梢GAP含量的表型数据,鉴定出与GAP合成积累相关的共表达模块与候选基因。8种GAP的含量在茶树新梢中的分布是不均匀的,其中苯丙烷GAP的含量要远高于萜烯类GAP含量。在低GAP含量品种与高GAP含量品种之间进行比较,共鉴定出4277个差异表达基因(differentially expressed genes, DEGs)。DEGs的实时荧光定量PCR (quantitative real-time polymerase chain reaction, qRT-PCR)变化趋势与转录组基本一致,利用该转录组数据获得的分析结果可信。利用WGCNA对过滤后的高表达基因进行划分,共获得26个共表达模块,确定了关键模块MEorange、MEyellow、MEdarkturquoise和MElightcyan与8个主要的GAP化合物显著相关(P < 0.01)。对模块中的基因进行GO与KEGG富集分析,根据基因的连接度以及功能注释,筛选出16个关键基因,包括13个结构基因(4个GST、3个GT、3个TPS、1个CYP450、1个CHI和1个DFR)与3个转录因子基因(2个NAC和1个WRKY)。萜烯类GAP与苯丙烷GAP在茶树秋季新梢中的积累具有显著的差异性,联合分析筛选到与GAP化合物合成积累密切相关的13个结构基因和3个转录因子基因,这些基因可能在调控茶树秋季新梢GAP的合成积累中起关键作用。

关键词: 茶树, 糖苷类香气前体, 转录组分析, 共表达分析, 调控基因

Abstract:

By analyzing transcriptome data from tender shoots of different tea cultivars in autumn, key genes involved in the regulation of glycoside aroma precursor (GAP) biosynthesis were identified. This study provides a theoretical foundation for elucidating the biosynthetic mechanisms of GAPs and for guiding the breeding of tea cultivars with high GAP content. Tender shoots from 14 tea cultivars were used to quantify eight types of GAPs. Weighted gene co-expression network analysis (WGCNA) was applied to integrate transcriptomic data with GAP content, enabling the identification of co-expression modules and candidate genes related to GAP biosynthesis and accumulation. The distribution of the eight GAP types in tender shoots was uneven, with phenylpropanoid-type GAPs showing significantly higher accumulation than terpene-type GAPs. A total of 4277 differentially expressed genes (DEGs) were identified by comparing high-GAP and low-GAP cultivars. Quantitative real-time polymerase chain reaction (qRT-PCR) validation of selected DEGs showed results consistent with transcriptomic data, confirming the reliability of the analysis. WGCNA identified 26 co-expression modules, among which four modulesMEorange, MEyellow, MEdarkturquoiseand MElightcyanwere significantly correlated with the main GAP types (P < 0.01). GO and KEGG enrichment analyses were performed on genes within these key modules. Based on gene connectivity and functional annotation, 16 key genes were identified, including 13 structural genes (four GSTs, three GTs, three TPSs, one CYP450, one CHI, and one DFR) and three transcription factor genes (two NACs and one WRKY). The seasonal variation in terpene- and phenylpropanoid-type GAP accumulation in autumn was notable, and the identified genes are likely to play central roles in regulating GAP biosynthesis and accumulation in tender tea shoots.

Key words: Camellia sinensis, glycoside aroma precursor, transcriptome analysis, co-expression analysis, regulatory genes

[1] Wang P J, Yu J X, Jin S, Chen S, Yue C, Wang W L, Gao S L, Cao H L, Zheng Y C, Gu M Y, et al. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Hortic Res, 2021, 8: 107.

[2] 方仕茂, 俞李沙, 朱旭君, 马媛春, 江杰, 沈强, 房婉萍. 茶叶中芳樟醇代谢及其调控机制研究进展. 南京农业大学学报, 2025, 48: 505–514.
Fang S M, Yu L S, Zhu X J, Ma Y C, Jiang J, Shen Q, Fang W P. Research advance of the metabolism and regulatory mechanisms of linalool in tea leaves. J Nanjing Agric Univ, 2025, 48: 505–514 (in Chinese with English abstract).

[3] Yue R, Li Y L, Qi Y J, Liang X Y, Zheng Z Q, Ye Z L, Tong W, Si X Y, Zhang Y R, Xia E H, et al. Divergent MYB paralogs determine spatial distribution of linalool mediated by JA and DNA demethylation participating in aroma formation and cold tolerance of tea plants. Plant Biotechnol J, 2025, 23: 1455–1475.

[4] Jin J Y, Zhao M Y, Jing T T, Zhang M T, Lu M Q, Yu G M, Wang J M, Guo D Y, Pan Y T, Hoffmann T D, et al. Volatile compound-mediated plant-plant interactions under stress with the tea plant as a model. Hortic Res, 2023, 10: uhad143.

[5] Wang J M, Hu Y T, Guo D Y, Gao T, Liu T Q, Jin J Y, Zhao M Y, Yu K K, Tong W, Ge H H, et al. Evolution and functional divergence of glycosyltransferase genes shaped the quality and cold tolerance of tea plants. Plant Cell, 2024, 37: koae268.

[6] 赵洁, 李富荣, 刘雯雯, 马姜明, 秦佳双, 陈岩, 王旭. 基于非靶向代谢组学的六垌茶关键特征成分分析. 食品科学, 2024, 45(22): 154–163.
Zhao J, Li F R, Liu W W, Ma J M, Qin J S, Chen Y, Wang X. Non-targeted metabolomics analysis of key characteristic components in Liudong tea. Food Sci, 2024, 45(22): 154–163 (in Chinese with English abstract). 

[7] Wang Y C, Wei Y, Li X Y, Zhang H M, Meng X, Duan C Q, Pan Q H. Ethylene-responsive VviERF003 modulates glycosylated monoterpenoid synthesis by upregulating VviGT14 in grapes. Hortic Res, 2024, 11: uhae065.

[8] Zhao M Y, Zhang N, Gao T, Jin J Y, Jing T T, Wang J M, Wu Y, Wan X C, Schwab W, Song C K. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytol, 2020, 226: 362–372.

[9] Huang X X, Wang Y, Lin J S, Chen L, Li Y J, Liu Q, Wang G F, Xu F, Liu L J, Hou B K. The novel pathogen-responsive glycosyltransferase UGT73C7 mediates the redirection of phenylpropanoid metabolism and promotes SNC1-dependent Arabidopsis immunity. Plant J, 2021, 107: 149–165.

[10] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络. 作物学报, 2023, 49: 672–686.
Deng Z, Jiang H Q, Cheng L S, Liu R, Huang M, Li M F, Du H W. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA. Acta Agron Sin, 2023, 49: 672–686 (in Chinese with English abstract). 

[11] Chen H, Song Y J, Wang Y, Wang H, Ding Z T, Fan K. Zno nanoparticles: improving photosynthesis, shoot development, and phyllosphere microbiome composition in tea plants. J Nanobiotechnology, 2024, 22: 389.

[12] Gao T, Shao S X, Hou B H, Hong Y P, Ren W W, Jin S, Gao S L, Wang P J, Ye N X. Characteristic volatile components and transcriptional regulation of seven major tea cultivars (Camellia sinensis) in China. Beverage Plant Res, 2023, 3: 17.

[13] Li J, Wen T, Zhang R M, Hu X L, Guo F, Zhao H, Wang P, Wang Y, Ni D J, Wang M L. Metabolome profiling and transcriptome analysis unveiling the crucial role of magnesium transport system for magnesium homeostasis in tea plants. Hortic Res, 2024, 11: uhae152.

[14] Lyu Y Q, Li D, Wu L Y, Zhu Y M, Ye Y, Zheng X Q, Lu J L, Liang Y R, Li Q S, Ye J H. Sugar signal mediates flavonoid biosynthesis in tea leaves. Hortic Res, 2022, 9: uhac049.

[15] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测. 作物学报, 2024, 50: 871–886.
Zhang L L, Yang J, Wang R J. Genome-wide association study and candidate gene prediction of nerolidol and linalool primeveroside content in tea plants. Acta Agron Sin, 2024, 50: 871–886 (in Chinese with English abstract).

[16] Xia E H, Li F D, Tong W, Li P H, Wu Q, Zhao H J, Ge R H, Li R P, Li Y Y, Zhang Z Z, et al. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnol J, 2019, 17: 1938–1953.

[17] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498–2504.

[18] 尹雨萌, 王雁楠, 康志河, 乔守晨, 卞倩倩, 李亚蔚, 曹郭郑, 赵国瑞, 徐丹丹, 杨育峰. 甘薯谷胱甘肽S-转移酶基因IbGSTU7的克隆及功能分析. 作物学报, 2025, 51: 1736–1746.
Yin Y M, Wang Y N, Kang Z H, Qiao S C, Bian Q Q, Li Y W, Cao G Z, Zhao G R, Xu D D, Yang Y F. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato. Acta Agron Sin, 2025, 51: 1736–1746 (in Chinese with English abstract).

[19] Bao H H, Yuan L, Luo Y C, Jing X Y, Zhang Z J, Wang J L, Zhu G T. A freezing responsive UDP-glycosyltransferase improves potato freezing tolerance via modifying flavonoid metabolism. Hortic Plant J, 2025, 11: 1595–1606.

[20] Ruan H X, Shi X X, Gao L P, Rashid A, Li Y, Lei T, Dai X L, Xia T, Wang Y S. Functional analysis of the dihydroflavonol 4-reductase family of Camellia sinensis: exploiting key amino acids to reconstruct reduction activity. Hortic Res, 2022, 9: uhac098.

[21] Cong L, Qu Y Y, Sha G Y, Zhang S C, Ma Y F, Chen M, Zhai R, Yang C Q, Xu L F, Wang Z G. PbWRKY75 promotes anthocyanin synthesis by activating PbDFR, PbUFGT, and PbMYB10b in pear. Physiol Plant, 2021, 173: 1841–1849.

[22] Sun L L, Zhang P, Wang R L, Wan J P, Ju Q, Rothstein S J, Xu J. The SNAC-a transcription factor ANAC032 reprograms metabolism in Arabidopsis. Plant Cell Physiol, 2019, 60: 999–1010.

[23] Shi M Y, Zhang Y, Zhang T, Zhang W J, Wang S, Wei M, Wang S S, Zhao L. The NAC activator, MdNAC77L, regulates anthocyanin accumulation in red flesh apple. Hortic Plant J, 2024, 6: 7.

[24] Gao J, Chen Y C, Gao M, Wu L W, Zhao Y X, Wang Y D. LcWRKY17, a WRKY transcription factor from Litsea cubeba, effectively promotes monoterpene synthesis. Int J Mol Sci, 2023, 24: 7210. 

[25] 王琴娣, 石海春, 余学杰, 赵长云, 曲比伍合, 夏伟, 柯永培. 玉米K718d矮秆基因的定位及候选基因分析. 植物遗传资源学报, 2023, 24: 559–568.
Wang Q D, Shi H C, Yu X J, Zhao C Y, Qu B, Xia W, Ke Y P. Localization and candidate gene analysis of a maize dwarf mutant K718d. J Plant Genet Resour, 2023, 24: 559–568 (in Chinese with English abstract).

[26] Ling Q Y, Zhang B H, Wang Y B, Xiao Z F, Hou J X, Liu Q Q, Zhang J, Xiao C L, Jin Z N, Liu Y Q. Identification of key genes controlling monoterpene biosynthesis of Citral-type Cinnamomum bodinieri Levl. Based on transcriptome and metabolite profiling. BMC Genomics, 2024, 25: 540.

[27] Kang M, Choi Y, Kim H, Choi M S, Lee S, Hyun Y, Kim S G. Loss-of-function variants of CYP706A3 in two natural accessions of Arabidopsis thaliana increase floral sesquiterpene emission. BMC Plant Biol, 2025, 25: 275.

[28] Xia J, Lou G G, Zhang L, Huang Y B, Yang J, Guo J, Qi Z C, Li Z H, Zhang G L, Xu S C, et al. Unveiling the spatial distribution and molecular mechanisms of terpenoid biosynthesis in Salvia miltiorrhiza and S. grandifolia using multi-omics and DESI-MSI. Hortic Res, 2023, 10: uhad109.

[29] Jiang T, Zhang Y, Zuo G G, Luo T, Wang H, Zhang R, Luo Z Y. Transcription factor PgNAC72 activates DAMMARENEDIOL SYNTHASE expression to promote ginseng saponin biosynthesis. Plant Physiol, 2024, 195: 2952–2969.

[30] Fu X M, Wang H B, Tao X, Liu Y T, Chen L Q, Yang N. Integrated multiomics analysis sheds light on the mechanisms of color and fragrance biosynthesis in wintersweet flowers. Int J Mol Sci, 2025, 26: 1684.

[31] Boachon B, Burdloff Y, Ruan J X, Rojo R, Junker R R, Vincent B, Nicolè F, Bringel F, Lesot A, Henry L, et al. A promiscuous CYP706A3 reduces terpene volatile emission from Arabidopsis flowers, affecting florivores and the floral microbiome. Plant Cell, 2019, 31: 2947–2972.

[32] 唐梦婷, 廖献盛, 吴先寿, 魏明秀, 郑玉成, 金珊, 张见明, 叶乃兴. 金牡丹不同茶类夏秋茶香气品质差异分析. 食品科学, 2025, 46(2): 171–182.
Tang M T, Liao X S, Wu X S, Wei M X, Zheng Y C, Jin S, Zhang J M, Ye N X. Differences in aroma quality of different types of Jinmudan tea made from tea leaves harvested in summer and autumn. Food Sci, 2025, 46(2): 171–182 (in Chinese with English abstract).

[33] 黄慧清, 郑玉成, 胡清财, 吴晴阳, 杨云, 欧晓西, 赵梦莹, 孙云. 基于SBSE-GC-O-MS技术的3个代表性乌龙茶品种关键香气成分分析. 食品科学, 2024, 45(1): 101–108.
Huang H Q, Zheng Y C, Hu Q C, Wu Q Y, Yang Y, Ou X X, Zhao M Y, Sun Y. Analysis of key aroma components of three representative oolong tea varieties by stir bar sorptive extraction combined with gas chromatography-olfactory-mass spectrometry. Food Sci, 2024, 45(1): 101–108 (in Chinese with English abstract).

[34] Zhang F L, Li W D, Zhang G, Zhang M, Liu Z J, Zhu K X, Liu Q C, Zhang S E, Shen W, Zhang X F. Identification of unique transcriptomic signatures through integrated multispecies comparative analysis and WGCNA in bovine oocyte development. BMC Genomics, 2023, 24: 265.

[35] Song H Y, Duan Z H, Huo H Q, Wang X L, Wang Y J, Chen J H, Jin L, Lin M F. A global overview of transcriptome dynamics during the late stage of flower bud development in Camellia oleifera. BMC Plant Biol, 2025, 25: 247.

[36] Ju Y L, Wang W N, Yue X F, Xue W, Zhang Y L, Fang Y L. Integrated metabolomic and transcriptomic analysis reveals the mechanism underlying the accumulation of anthocyanins and other flavonoids in the flesh and skin of teinturier grapes. Plant Physiol Biochem, 2023, 197: 107667.

[37] Zhang Y Y, Zhang Z N, Guo S J, Qu P Y, Liu J P, Cheng C Z. Characterization of blueberry glutathione S-transferase (GST) genes and functional analysis of VcGSTF8 reveal the role of ‘MYB/bHLH-GSTF’ module in anthocyanin accumulation. Ind Crops Prod, 2024, 218: 119006.

[38] Zhao Y, Dong W Q, Zhu Y C, Allan A C, Kui L W, Xu C J. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnol J, 2020, 18: 1284–1295.

[39] Qiu L K, Chen K, Pan J, Ma Z Y, Zhang J J, Wang J, Cheng T R, Zheng T C, Pan H T, Zhang Q X. Genome-wide analysis of glutathione S-transferase genes in four Prunus species and the function of PmGSTF2, activated by PmMYBa1, in regulating anthocyanin accumulation in Prunus mume. Int J Biol Macromol, 2024, 281: 136506.

[40] Khan I A, Cao K, Guo J, Li Y, Wang Q, Yang X W, Wu J L, Fang W C, Wang L R. Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. Plant Sci, 2022, 316: 111151.

[41] Zheng Y C, Chen P F, Zheng P, Chen J H, Sun B M, Liu S Q. Transcriptomic insights into the enhanced aroma of Guangdong oolong dry tea (Camellia sinensis cv. yashixiang Dancong) in winter. Foods, 2024, 13: 160.

[42] Zhang K, Sun Y, Li M N, Long R C. CrUGT87A1, a UDP-sugar glycosyltransferases (UGTs) gene from Carex rigescens, increases salt tolerance by accumulating flavonoids for antioxidation in Arabidopsis thaliana. Plant Physiol Biochem, 2021, 159: 28–36.

[43] Medda S, Sanchez-Ballesta M T, Romero I, Dessena L, Mulas M. Expression of structural flavonoid biosynthesis genes in dark-blue and white myrtle berries (Myrtus communis L.). Plants, 2021, 10: 316.

[44] Cui G F, Li Y, Yi X, Wang J Y, Lin P F, Lu C, Zhang Q J, Gao L Z, Zhong G H. Meliaceae genomes provide insights into wood development and limonoids biosynthesis. Plant Biotechnol J, 2023, 21: 574–590.

[45] Yang Y, Hu X B. The nearly complete genome of Grifola frondosa and light-induced genes screened based on transcriptomics promote the production of triterpenoid compounds. J Fungi, 2025, 11: 322.

[46] Chen H, Qin X H, Chen Y H, Zhang H Y, Feng Y H, Tan J H, Chen X H, Hu L, Xie J K, Xie J B, et al. Chromosome-level genome assembly of Pinus massoniana provides insights into conifer adaptive evolution. Gigascience, 2025, 14: giaf056.

[47] Wan L Y, Huang Q L, Li C, Yu H X, Tan G Y, Wei S G, El-Sappah A H, Sooranna S, Zhang K, Pan L M, et al. Integrated metabolome and transcriptome analysis identifies candidate genes involved in triterpenoid saponin biosynthesis in leaves of Centella asiatica (L.) Urban. Front Plant Sci, 2023, 14: 1295186.

[48] Zhao Y, Liu G Z, Yang F, Liang Y L, Gao Q Q, Xiang C F, Li X, Yang R, Zhang G H, Jiang H F, et al. Multilayered regulation of secondary metabolism in medicinal plants. Mol Hortic, 2023, 3: 11.

[49] Khan W, Wu D N, Chen P F, Zhao H B, Zheng P, Sun B M, Liu S Q. Multi-omics analysis of the low temperatures in enhancing the aroma of Oolong tea (Camellia sinensis cv. Yashixiang Dancong). LWT, 2025, 224: 117807.

[50] Li M Y, Shao Y M, Pan B W, Liu C, Tan H X. Regulation of important natural products biosynthesis by WRKY transcription factors in plants. J Adv Res, 2025, 1: 9.

[51] Liu W J, Wang Y C, Yu L, Jiang H Y, Guo Z W, Xu H F, Jiang S H, Fang H C, Zhang J, Su M Y, et al. MdWRKY11 participates in anthocyanin accumulation in red-fleshed apples by affecting MYB transcription factors and the photoresponse factor MdHY5. J Agric Food Chem, 2019, 67: 8783–8793.

[52] Bai Y, Zou R, Zhang H Y, Li J Y, Wu T. Functional characterization of CsF3Ha and its promoter in response to visible light and plant growth regulators in the tea plant. Plants, 2024, 13: 196.

[53] Fang J P, Zhou L W, Chen Q C, Wang J B, Zhuang Y, Lin S Q, Yan H S, Zhao K, Zhang J S, Henry R J. Integrated multi-omics analysis unravels the floral scent characteristics and regulation in “Hutou” multi-petal jasmine. Commun Biol, 2025, 8: 256.

[54] Liu M Y, Sun W J, Ma Z T, Yu G L, Li J H, Wang Y D, Wang X. Comprehensive multiomics analysis reveals key roles of NACs in plant growth and development and its environmental adaption mechanism by regulating metabolite pathways. Genomics, 2020, 112: 4897–4911.

[55] Zhang S Y, Chen Y X, Zhao L L, Li C Q, Yu J Y, Li T T, Yang W Y, Zhang S N, Su H Y, Wang L. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiol, 2020, 40: 413–423.

[56] Cao X M, Su Y K, Zhao T, Zhang Y Y, Cheng B, Xie K L, Yu M L, Allan A, Klee H, Chen K S, et al. Multi-omics analysis unravels chemical roadmap and genetic basis for peach fruit aroma improvement. Cell Rep, 2024, 43: 114623. 

[1] 梅飘, 刘丁丁, 叶圆圆, 张晨禹, 丁诗琦, 李亚奇, 王培鑫, 梅菊芬, 马春雷. 基于茶树液相功能芯片的白化茶树资源遗传多样性分析[J]. 作物学报, 2025, 51(9): 2358-2370.
[2] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[3] 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631.
[4] 王晨, 贺丹, 姚敏, 邱萍, 何昕, 熊兴华, 康雷, 刘忠松, 钱论文. 基于转录组分析鉴定甘蓝型油菜开花候选基因以及BnaCOR27功能验证[J]. 作物学报, 2025, 51(10): 2693-2704.
[5] 郭飞翔, 李春霞, 周爽, 郭彬彬, 张均, 马超. 绿豆R2R3-MYB转录因子家族鉴定及其类黄酮合成调控基因的筛选[J]. 作物学报, 2025, 51(1): 117-133.
[6] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[7] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[8] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[9] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[10] 张力岚, 杨军, 王让剑. 茶树橙花叔醇和芳樟醇樱草糖苷含量全基因组关联分析及候选基因预测[J]. 作物学报, 2024, 50(4): 871-886.
[11] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
[12] 代洪苇, 刘洁强, 张丽, 童华荣, 袁连玉. 茶树CsMCC1CsMCC2基因的克隆及表达特征性分析[J]. 作物学报, 2024, 50(3): 656-668.
[13] 张锦辉, 肖姿仪, 李旭华, 张明, 贾春兰, 潘振远, 邱法展. 玉米突变体caspl2b2的耐盐特性评价及转录组分析[J]. 作物学报, 2024, 50(12): 3144-3154.
[14] 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859.
[15] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!