欢迎访问作物学报,今天是

作物学报

• •    

基于转录组分析鉴定甘蓝型油菜开花候选基因以及BnaCOR27功能验证

王晨1,2,贺丹1,2,姚敏1,2,邱萍1,2,何昕1,2,熊兴华1,2,康雷1,2,刘忠松1,2,钱论文1,2,*   

  1. 1 湖南农业大学农学院, 湖南长沙 410128; 2 岳麓山实验室, 湖南长沙 410082
  • 收稿日期:2025-01-16 修回日期:2025-07-09 接受日期:2025-07-09 网络出版日期:2025-07-22
  • 通讯作者: 钱论文, E-mail: qianlunwen@163.com
  • 基金资助:
    本研究由湖南省科技创新领军人才项目(2023RC1063)和长沙市杰出创新青年培养计划项目(kq2107016)资助。

Transcriptome-based identification of flowering candidate genes and functional characterization of BnaCOR27 in Brassicaapus

WANG Chen1,2,HE Dan1,2,YAO Min1,2,QIU Ping1,2,HE Xin1,2,XIONG Xing-Hua1,2,KANG Lei1,2,LIU Zhong-Song1,2,QIAN Lun-Wen1,2,*   

  1. 1 Agricultural College, Hunan Agricultural University, Changsha 410128, Hunan, China; 2 Yuelu Mountain Laboratory, Changsha 410082, Hunan, China
  • Received:2025-01-16 Revised:2025-07-09 Accepted:2025-07-09 Published online:2025-07-22
  • Contact: 钱论文, E-mail: qianlunwen@163.com
  • Supported by:
    This study was supported by the Hunan province science and technology innovation leading talent project, China (2023RC1063), and the Training Program for Excellent Young Innovators of Changsha, China (kq2107016).

摘要:

开花是高等植物从营养生长到生殖生长的一个重要阶段,影响生物量和种子产量。为了揭示甘蓝型油菜春化的调控网络以及挖掘重要候选基因,本研究对7个甘蓝型油菜品种春化前后的叶片转录组数据进行分析,鉴定出1305个差异表达基因,其中上调基因有554个,下调基因有751个。GO富集分析发现,差异基因主要富集在春化途径、光周期途径、昼夜节律、花发育以及冷响应等生物学过程中,进一步分析发现96个开花基因存在差异表达,包括BnaVIN3BnaFLCBnaCOR27等基因。此外,全基因组关联分析鉴定BnaCOR27-C04与开花时间显著关联,结合加权基因共表达网络分析,发现BnaCOR27BnaFLCBnaFTBnaVIN3等基因直接相连形成潜在的网络调控甘蓝型油菜开花时间。进一步利用CRISPR/CAS9基因编辑技术对BnaCOR27进行敲除,通过对T3代转基因植株分析,发现敲除突变体株系表现出早花表型。这一结果能对已有的甘蓝型油菜开花研究进行补充和丰富,为进一步改良开花性状提供遗传基础

关键词: 甘蓝型油菜, 开花, 转录组分析, GWAS, BnaCOR27

Abstract:

Flowering is a critical developmental transition in higher plants, marking the shift from vegetative to reproductive growth, and it directly influences biomass accumulation and seed yield. To elucidate the regulatory network underlying vernalization in Brassica napus and identify key candidate genes, we analyzed the transcriptomes of leaves from seven rapeseed varieties before and after vernalization. A total of 1305 differentially expressed genes (DEGs) were identified, including 554 upregulated and 751 downregulated genes. GO enrichment analysis showed that these DEGs were primarily involved in biological processes such as the vernalization pathway, photoperiod pathway, circadian rhythm, flower development, and response to cold. Further analysis revealed differential expression in 96 flowering-related genes, including BnaVIN3, BnaFLC, BnaCOR27, among others. Additionally, genome-wide association studies (GWAS) indicated that BnaCOR27-C04 is significantly associated with flowering time. Integration with weighted gene co-expression network analysis (WGCNA) suggested that BnaCOR27 may interact with genes such as BnaFLC, BnaFT, and BnaVIN3, forming a potential regulatory network controlling flowering time in rapeseed. Furthermore, CRISPR/Cas9-mediated knockout of BnaCOR27 resulted in an early-flowering phenotype in T3 transgenic plants. These findings enhance our understanding of flowering regulation in B. napus and provide a genetic foundation for improving flowering-related traits in future breeding efforts.

Key words: Brassica napus, flowering, transcriptome analysis, GWAS, BnaCOR27

[1] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953.

[2] Ziolkowski P A, Kaczmarek M, Babula D, Sadowski J. Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J, 2006, 47: 63–74.

[3] Amasino R. Seasonal and developmental timing of flowering. Plant J, 2010, 61: 1001–1013.

[4] Kobayashi Y, Weigel D. Move on up, it’s time for change: mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007, 21: 2371–2384.

[5] Cho L H, Yoon J, An G. The control of flowering time by environmental factors. Plant J, 2017, 90: 708–719.

[6] Song Y H, Shim J S, Kinmonth-Schultz H A, Imaizumi T. Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol, 2015, 66: 441–464.

[7] Andrés F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 2012, 13: 627–639.

[8] Casal J J, Qüesta J I. Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol, 2018, 217: 1029–1034.

[9] Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot, 2014, 114: 1445–1458.

[10] Michaels S D, Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 1999, 11: 949–956.

[11] Sheldon C C, Rouse D T, Finnegan E J, Peacock W J, Dennis E S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA, 2000, 97: 3753–3758.

[12] Bastow R, Mylne J S, Lister C, Lippman Z, Martienssen R A, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature, 2004, 427: 164–167.

[13] Alexandre C M, Hennig L. FLC or not FLC: the other side of vernalization. J Exp Bot, 2008, 59: 1127–1135.

[14] Michaels S D, Himelblau E, Kim S Y, Schomburg F M, Amasino R M. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol, 2005, 137: 149–156.

[15] Sheldon C C, Jean Finnegan E, Dennis E S, James Peacock W. Quantitative effects of vernalization on FLC and SOC1 expression. Plant J, 2006, 45: 871–883.

[16] Bond D M, Dennis E S, Jean Finnegan E. Hypoxia: a novel function for VIN3. Plant Signal Behav, 2009, 4: 773–776.

[17] Searle I, He Y H, Turck F, Vincent C, Fornara F, Kröber S, Amasino R A, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev, 2006, 20: 898–912.

[18] 魏大勇. 甘蓝型油菜遗传结构分析和选择驯化研究. 西南大学博士学位论文, 重庆, 2015.
Wei D Y. Genetic Structure Analysis and Selection and Domestication of Brassica napus L. PhD Dissertation of Southwest University, Chongqing, China, 2015 (in Chinese with English abstract).

[19] Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, et al. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ, 2016, 39: 1228–1239.

[20] Huang L Y, Min Y, Schiessl S, Xiong X H, Jan H U, He X, Qian W, Guan C Y, Snowdon R J, Hua W, et al. Integrative analysis of GWAS and transcriptome to reveal novel loci regulation flowering time in semi-winter rapeseed. Plant Sci, 2021, 310: 110980.

[21] Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Große I, Schiessl S, Jung C, Emrani N. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). Plant Cell Environ, 2018, 41: 1935–1947.

[22] Marc Jones D, Wells R, Pullen N, Trick M, Irwin J A, Morris R J. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. Plant J, 2018, 96: 103–118.

[23] Marc Jones D, Olson T S G, Pullen N, Wells R, Irwin J A, Morris R J. The oilseed rape developmental expression resource: a resource for the investigation of gene expression dynamics during the floral transition in oilseed rape. BMC Plant Biol, 2020, 20: 344.

[24] Childs K L, Davidson R M, Robin Buell C. Gene coexpression network analysis as a source of functional annotation for rice genes. PLoS One, 2011, 6: e22196.

[25] Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol, 2017, 585: 135–158.

[26] 谷思宇, 杨晓梅, 贺俊崎. CRISPR/Cas9基因编辑技术: 基因剪刀: 重写生命密码的工具: 2020年诺贝尔化学奖简介. 首都医科大学学报, 2020, 41: 10141018.

Gu S Y, Yang X M, He J Q. CRISPR/Cas9 gene editing technology: gene scissors: a tool for rewriting the code of life: an introduction to the 2020 Nobel Prize in Chemistry. J Capital Medical Univ, 2020, 41: 10141018 (in Chinese with English abstract)

[27] Wang L W, Sun S, Wu T T, Liu L P, Sun X G, Cai Y P, Li J C, Jia H C, Yuan S, Chen L, et al. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J, 2020, 18: 1869–1881.

[28] Min Y C, He S C, Wang X, Hu H, Wei S H, Ge A K, Jiang L X, Yang S Q, Guo Y, Liu Z J, et al. Transcription factors BnaC09.FUL and BnaC06.WIP2 antagonistically regulate flowering time under long-day conditions in Brassica napus. J Genet Genomics, 2025, 52: 650–665.

[29] 李东昊, 姜玲, 刘春林, 阮颖. 甘蓝型油菜BnaSDG8基因CRISPR/Cas9敲除载体的构建及功能探究. 湖南农业大学学报(自然科学版)2018, 44(4): 346–352.

Li D H, Jiang L, Liu C L, Ruan Y. Construction of CRISPR/Cas9 knockout vector BnaSDG8 and its genetic transformation in Brassica napus. J Hunan Agric Univ (Nat Sci), 2018, 44(4): 346–352 (in Chinese with English abstract).

[30] Xiang X R, Qiu P, Mei Z C, Yao M, Liu W, He D, Cao S, He X, Xiong X H, Liu Z S, et al. Genome-wide association study and transcriptome analysis reveal natural variation of key genes regulation flowering time in rapeseed. Mol Breed, 2024, 44: 40.

[31] Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884–i890.

[32] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357–360.

[33] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.

[34] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742.

[35] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.

[36] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498–2504.

[37] Liu H, Ding Y D, Zhou Y Q, Jin W Q, Xie K B, Chen L L. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant, 2017, 10: 530–532.

[38] 刘询, 张斌, 李浪, 刘春林, 阮颖. 甘蓝型油菜BnaLCR23基因CRISPR-Cas9表达载体的构建及遗传转化. 分子植物育种, 2017, 15: 30243029.
Liu X, Zhang B, Li L, Liu C L, Ruan Y. Construction and genetic transformation of BnaLCR23 gene CRISPR-Cas9 expression vector in Brassica napus L. Mol Plant Breed, 2017, 15: 30243029 (in Chinese with English abstract).

[39] 张哲, 殷艳, 刘芳, 王积军, 傅廷栋. 我国油菜多功能开发利用现状及发展对策. 中国油料作物学报, 2018, 40: 618623.
Zhang Z, Yin Y, Liu F, Wang J J, Fu T D. Current situation and development countermeasures of Chinese rapeseed multifunctional development and utilization. Chin J Oil Crop Sci, 2018, 40: 618–623 (in Chinese with English abstract).

[40] Geraldo N, Bäurle I, Kidou S I, Hu X Y, Dean C. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex. Plant Physiol, 2009, 150: 1611–1618.

[41] Helal M, Gill R A, Tang M Q, Yang L, Hu M, Yang L L, Xie M L, Zhao C J, Cheng X H, Zhang Y Y, et al. SNP- and haplotype-based GWAS of flowering-related traits in Brassica napus. Plants, 2021, 10: 2475.

[42] Xu Y, Zhang B B, Ma N, Liu X, Qin M F, Zhang Y, Wang K, Guo N, Zuo K F, Liu X, et al. Quantitative trait locus mapping and identification of candidate genes controlling flowering time in Brassica napus L. Front Plant Sci, 2021, 11: 626205.

[43] Tudor E H, Marc Jones D, He Z S, Bancroft I, Trick M, Wells R, Irwin J A, Dean C. QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol J, 2020, 18: 2466–2481.

[44] Hines P J. Tic TOC1 plant clock. Sci Signal, 2012, 5: ec108.

[45] Li X, Ma D B, Lu S X, Hu X Y, Huang R F, Liang T, Xu T D, Tobin E M, Liu H T. Blue light- and low temperature-regulated COR27 and COR28 play roles in the Arabidopsis circadian clock. Plant Cell, 2016, 28: 2755–2769.

[46] Qi P L, Zhou H R, Zhao Q Q, Feng C, Ning Y Q, Su Y N, Cai X W, Yuan D Y, Zhang Z C, Su X M, et al. Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis. Nucleic Acids Res, 2022, 50: 7380–7395.

[47] Yang M K, Lin W J, Xu Y R, Xie B Y, Yu B Y, Chen L, Huang W. Flowering-time regulation by the circadian clock: from Arabidopsis to crops. Crop J, 2024, 12: 17–27.

[48] Wang F, Han T W, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol, 2024, 7: 579.

[49] Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot, 2010, 61: 2247–2254.

[50] Liu Y W, Li X, Ma D B, Chen Z R, Wang J W, Liu H T. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering. EMBO Rep, 2018, 19: e45762.

[51] Shin Y H, Lee H M, Park Y D. CRISPR/Cas9-Mediated Editing of AGAMOUS-like Genes Results in a Late-Bolting Phenotype in Chinese Cabbage (Brassica rapa ssp. pekinensis). Int J Mol Sci, 2022, 23: 15009.

[52] Yu J W, Rubio V, Lee N Y, Bai S L, Lee S Y, Kim S S, Liu L J, Zhang Y Y, Irigoyen M L, Sullivan J A, et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell, 2008, 32: 617–630.

[53] Li Z C, Fu X, Wang Y Z, Liu R Y, He Y H. Polycomb-mediated gene silencing by the BAH-EMF1 complex in plants. Nat Genet, 2018, 50: 1254–1261.

[54] Lee J H, Yoo S J, Park S H, Hwang I, Lee J S, Ahn J H. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev2007, 21: 397402.

[1] 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568.
[2] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[3] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197.
[4] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[5] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[6] 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631.
[7] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
[8] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[9] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[10] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[11] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[12] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[13] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[14] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
[15] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!