• •
何梅1,2,张佳蕾1,范士凯1,孟静静1,王建国1,郭峰1,李新国1,万书波1,*,杨莎1,*
HE Mei1,2,ZHANG Jia-Lei1,FAN Shi-Kai1,MENG Jing-Jing1,WANG Jian-Guo1,GUO Feng1,LI Xin-Guo1,WAN Shu-Bo1,*,YANG Sha1,*
摘要:
花生(Arachis hypogaea L.)是重要的油料和经济作物,干旱是限制花生产量的主要因素之一。探明花生响应干旱胁迫的关键基因,对后续花生品种改良,提高产量具有重要意义。本研究以花生品种花育22号(HY22)为研究对象,足钙(SC)、缺钙(NC) 2种营养液水培培养,终浓度为20% PEG-6000溶液模拟干旱胁迫处理(DSC、DNC)。通过干旱处理后转录组数据结合花生钙传感蛋白编码基因CPKs的差异表达筛选出花生抗旱基因AhCPK8。以干旱处理后的花生叶片为材料,利用酵母双杂交筛选到其互作蛋白甘油醛-3-磷酸脱氢酶(GAPDH)并得到初步验证。GAPDH家族基因在调节植物对非生物胁迫的反应中发挥着重要作用。基于AhGAPDH基因家族的生物信息学分析,在花生中共鉴定出21个GAPDH基因,再根据大豆和拟南芥系统发育树关系以及基因在12条染色体上的先后顺序进行命名。基本理化特征结果表明,AhGAPDH家族成员大多数为稳定、疏水性蛋白;同一聚类的AhGAPDH家族成员大多数表现出相似的motif结构、保守结构域和基因结构;启动子区域中有丰富的光响应、植物激素响应及非生物胁迫响应相关的顺式作用元件。AhCPK8与AhGAPDH存在相互作用,共同调控花生的抗旱性。
[1] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol, 2003, 30: 239–264. [2] Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira K S, Takebayashi Y, Kojima M, Sakakibara H, et al. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J, 2017, 90: 61–78.
[3] 任洪雷, 朱筱, 张丰屹, 张必弦, 王家军, 王金生, 吴俊江, 王广金, 邱丽娟. 干旱胁迫的影响及抗旱性研究进展. 分子植物育种, 网络首发[2024-01-19], http://kns.cnki.net/kcms/detail/46.1068.S.20240119.1548.002.
[4] 万书波, 封海胜, 王秀贞. 花生营养成分综合评价与产业化发展战略研究. 花生学报, 2004, 33(2): 1–6.
[5] 孙海艳, 侯乾, 董文召, 王晶珊, 刘立峰, 雷永. 我国花生品种发展现状. 中国种业, 2022, (7): 15–17. [6] Ding L, Lu Z F, Gao L M, Guo S W, Shen Q R. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front Plant Sci, 2018, 9: 1143.
[7] 顾学花, 孙莲强, 高波, 孙奇泽, 刘辰, 张佳蕾, 李向东. 施钙对干旱胁迫下花生生理特性、产量和品质的影响. 应用生态学报, 2015, 26: 1433–1439.
[8] 武志刚, 武舒佳, 王迎春, 郑琳琳. 植物中钙依赖蛋白激酶(CDPK)的研究进展. 草业学报, 2018, 27(1): 204–214. [9] Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell, 2010, 22: 541–563. [10] Yip Delormel T, Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol, 2019, 224: 585–604. [11] Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019–3036. [12] Bin L H, Xu Z L, Chu Y Q, Yan Y, Nie X J, Song W N. Genome-wide analysis of calcium-dependent protein kinase (CDPK) family and functional characterization of TaCDPK25-U in response to drought stress in wheat. Environ Exp Bot, 2023, 209: 105277. [13] Yu T F, Zhao W Y, Fu J D, Liu Y W, Chen M, Zhou Y B, Ma Y Z, Xu Z S, Xi Y J. Genome-wide analysis of CDPK family in foxtail millet and determination of SiCDPK24 functions in drought stress. Front Plant Sci, 2018, 9: 651. [14] Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol J, 2022, 20: 143–157. [15] Sirover M A. On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta, 2011, 1810: 741–751. [16] Rius S P, Casati P, Iglesias A A, Gomez-Casati D F. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol, 2008, 148: 1655–1667. [17] Anoman A D, Muñoz-Bertomeu J, Rosa-Téllez S, Flores-Tornero M, Serrano R, Bueso E, Fernie A R, Segura J, Ros R. Plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in Arabidopsis. Plant Physiol, 2015, 169: 1619–1637.
[18] 王芳, 陈巧红, 董乐, 王云, 朱国立, 许珊珊, 黄苹苹, 王建颖, 林娟. 蓖麻3-磷酸甘油醛脱氢酶的基因克隆及表达分析. 分子植物育种, 2018, 16: 7965–7974. [19] Simkin A J, Alqurashi M, Lopez-Calcagno P E, Headland L R, Raines C A. Glyceraldehyde-3-phosphate dehydrogenase subunits A and B are essential to maintain photosynthetic efficiency. Plant Physiol, 2023, 192: 2989–3000. [20] Guo L, Devaiah S P, Narasimhan R, Pan X Q, Zhang Y Y, Zhang W H, Wang X M. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell, 2012, 24: 2200–2212. [21] Zeng L F, Deng R, Guo Z P, Yang S S, Deng X P. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genomics, 2016, 17: 240. [22] Vescovi M, Zaffagnini M, Festa M, Trost P, Lo Schiavo F, Costa A. Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Plant Physiol, 2013, 162: 333–346. [23] Zhao X C, Wang J, Xia N, Qu Y W, Zhan Y H, Teng W L, Li H Y, Li W B, Li Y G, Zhao X, et al. Genome-wide identification and analysis of glyceraldehyde-3-phosphate dehydrogenase family reveals the role of GmGAPDH14 to improve salt tolerance in soybean (Glycine max L.). Front Plant Sci, 2023, 14: 1193044.
[24] 石运庆, 王建, 苗华荣, 胡晓辉, 陈静. 不同花生品种芽期抗旱性筛选及其田间验证. 山东农业科学, 2015, 47(2): 34–37.
[25] 王彩, 万勇善, 刘风珍, 张昆. 苗期PEG渗透胁迫条件下花生品种抗旱性的研究. 山东农业科学, 2018, 50(6): 65–71. [26] Jiang C J, Li X L, Zou J X, Ren J Y, Jin C Y, Zhang H, Yu H Q, Jin H. Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biol, 2021, 21: 64. [27] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078–2079. [28] Robinson M D, McCarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26: 139–140. [29] Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: i884–i890. [30] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907–915. [31] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202. [32] Yang S, Wang J G, Tang Z H, Li Y, Zhang J L, Guo F, Meng J J, Cui F, Li X G, Wan S B. Calcium/calmodulin modulates salt responses by binding a novel interacting protein SAMS1 in peanut (Arachis hypogaea L.). Crop J, 2023, 11: 21–32. [33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408. [34] Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46: W200–W204. [35] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39–W49. [36] Spitz F, Furlong E E M. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet, 2012, 13: 613–626. [37] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870–1874. [38] Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49: W293–W296. [39] Deng Y H, Chen Q J, Qu Y Y. Protein S-acyl transferase GhPAT27 was associated with Verticillium wilt resistance in cotton. Plants, 2022, 11: 2758. [40] Li Q Z, Hu T, Lu T J, Yu B, Zhao Y. Calcium-dependent protein kinases CPK3/4/6/11 and 27 respond to osmotic stress and activate SnRK2s in Arabidopsis. Dev Cell, 2025, 60: 1423–1438.e8.
[41] 刘小龙, 李霞, 钱宝云, 唐玉婷. 植物体内钙信号及其在调节干旱胁迫中的作用. 西北植物学报, 2014, 34: 1927–1936. [42] Morigasaki S, Shimada K, Ikner A, Yanagida M, Shiozaki K. Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell, 2008, 30: 108–113. [43] Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell, 2007, 19: 1065–1080. [44] Suzuki Y, Ishiyama K, Sugawara M, Suzuki Y, Kondo E, Takegahara-Tamakawa Y, Yoon D K, Suganami M, Wada S, Miyake C, et al. Overproduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase improves photosynthesis slightly under elevated [CO2] conditions in rice. Plant Cell Physiol, 2021, 62: 156–165.
[45] 李敏, 伍国强, 魏明, 刘晨. 植物CDPK在响应逆境胁迫中的作用及机制. 生物工程学报, 2024, 40: 3337–3359. [46] Zou J J, Li X D, Ratnasekera D, Wang C, Liu W X, Song L F, Zhang W Z, Wu W H. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell, 2015, 27: 1445–1460. [47] Zhu C G, Jing B Y, Lin T, Li X Y, Zhang M, Zhou Y H, Yu J Q, Hu Z J. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. Plant Physiol, 2024, 195: 1005–1024. |
[1] | 尹雨萌, 王雁楠, 康志河, 乔守晨, 卞倩倩, 李亚蔚, 曹郭郑, 赵国瑞, 徐丹丹, 杨育峰. 甘薯谷胱甘肽S-转移酶基因IbGSTU7的克隆及功能分析[J]. 作物学报, 2025, 51(7): 1736-1746. |
[2] | 李福媛, 杨奕, 马继琼, 许明辉, 林良斌, 孙一丁. 水稻OsPUB4基因克隆、激素诱导表达分析与互作蛋白筛选[J]. 作物学报, 2025, 51(6): 1690-1700. |
[3] | 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811. |
[4] | 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311. |
[5] | 刘波, 池明, 曹梦琦, 唐达, 杨恒照, 张卫华, 薛聪. 过表达马铃薯StuPPO9基因对烟草抗旱能力的影响[J]. 作物学报, 2024, 50(9): 2237-2247. |
[6] | 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634. |
[7] | 朱旭东, 杨兰锋, 陈媛媛, 侯泽豪, 罗旖柔, 熊泽浩, 方正武. 甜荞FeSGT1基因克隆及抗旱功能解析[J]. 作物学报, 2023, 49(6): 1573-1583. |
[8] | 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965. |
[9] | 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582. |
[10] | 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位[J]. 作物学报, 2023, 49(11): 3029-3041. |
[11] | 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664. |
[12] | 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408. |
[13] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[14] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[15] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
|