• •
李福媛1,**,杨奕2,**,马继琼2,许明辉2,林良斌1,*,孙一丁2,*
LI Fu-Yuan1,**,YANG-Yi2,**,MA Ji-Qiong2,XU Ming-Hui2,LIN Liang-Bin1,*,SUN Yi-Ding2,*
摘要:
为探究E3泛素连接酶OsPUB4的功能,阐明OsPUB4介导的调控机制,以日本晴为材料,克隆水稻U-Box型E3泛素连接酶基因OsPUB4,且通过生物信息学在线网站对启动子顺式作用元件和编码区序列特征进行预测,并构建系统发育树,采用实时荧光定量PCR技术探究该基因在不同植物激素诱导下的表达特征,同时利用酵母cDNA文库对OsPUB4的互作蛋白进行筛选。结果表明:(1) 水稻OsPUB4基因启动子区含多个与激素、光、温度等相关的响应元件,编码区全长2187 bp,无信号肽、含1个跨膜结构域和62个磷酸化位点;(2) OsPUB4与乌拉尔图小麦PUB4蛋白的亲缘关系较近;(3) 通过外源激素诱导发现,短时间内JA会抑制水稻叶片中OsPUB4基因的表达,而IAA则相反;(4) OsPUB4蛋白与OsTPS5、Di19和THIC等存在相互作用关系。综上,OsPUB4基因受外源激素诱导表达,且与多个胁迫响应相关蛋白存在互作关系,为深入研究OsPUB4在水稻胁迫响应方面的功能提供理论依据。
[1] 周文期, 强晓霞, 李思雨, 王森, 卫万荣. 水稻卷叶等位突变体e202的鉴定和基因精细定位. 作物学报, 2023, 49: 3029–3041. [2] VanDemark A P, Hill C P. Structural basis of ubiquitylation. Curr Opin Struct Biol, 2002, 12: 822–830. [3] Park J J, Yi J, Yoon J, Cho L H, Ping J, Jeong H J, Cho S K, Kim W T, An G. OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J, 2011, 65: 194–205. [4] Hao Z Y, Tian J F, Fang H, Fang L, Xu X, He F, Li S Y, Xie W Y, Du Q, You X M, et al. A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism. Cell Rep, 2022, 40: 111235. [5] Wang K, Li S, Chen L X, Tian H R, Chen C, Fu Y H, Du H T, Hu Z, Li R T, Du Y X, et al. E3 ubiquitin ligase OsPIE3 destabilises the B-lectin receptor-like kinase PID2 to control blast disease resistance in rice. New Phytol, 2023, 237: 1826–1842. [6] Liu D P, Zhang X X, Li Q L, Xiao Y H, Zhang G X, Yin W C, Niu M, Meng W J, Dong N N, Liu J H, et al. The U-box ubiquitin ligase TUD1 promotes brassinosteroid-induced GSK2 degradation in rice. Plant Commun, 2023, 4: 100450. [7] Yang C W, González-Lamothe R, Ewan R A, Rowland O, Yoshioka H, Shenton M, Ye H, O’Donnell E, Jones J D G, Sadanandom A. The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell, 2006, 18: 1084–1098. [8] He Q, McLellan H, Boevink P C, Sadanandom A, Xie C H, Birch P R J, Tian Z D. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot, 2015, 66: 3189–3199. [9] Cho S K, Ryu M Y, Song C, Kwak J M, Kim W T. Arabidopsis PUB22 and PUB23 are homologous U-Box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell, 2008, 20: 1899–1914. [10] Wang N, Liu Y P, Cong Y H, Wang T T, Zhong X J, Yang S P, Li Y, Gai J Y. Genome-wide identification of soybean U-box E3 ubiquitin ligases and roles of GmPUB8 in negative regulation of drought stress response in Arabidopsis. Plant Cell Physiol, 2016, 57: 1189–1209.
[11] 张念. 番茄E3泛素连接酶SlSGR9抗旱功能研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022. [12] Bergler J, Hoth S. Plant U-box Armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol, 2011, 13: 725–730. [13] Zhang M, Zhao J F, Li L, Gao Y N, Zhao L L, Patil S B, Fang J J, Zhang W H, Yang Y H, Li M, et al. The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation. Plant Cell Environ, 2017, 40: 2831–2843.
[14] 齐晨辉, 赵先炎, 韩朋良, 姜翰, 王永旭, 胡大刚, 郝玉金. 苹果U-box型E3泛素连接酶MdPUB24的耐盐性和ABA敏感性鉴定. 园艺学报, 2017, 44: 2255–2264. [15] Ni X M, Tian Z D, Liu J, Song B T, Li J C, Shi X L, Xie C H. StPUB17, a novel potato UND/PUB/ARM repeat type gene, is associated with late blight resistance and NaCl stress. Plant Sci, 2010, 178: 158–169. [16] Jiao L, Zhang Y L, Wu J, Zhang H Q, Lu J. A novel U-Box protein gene from “zuoshanyi” grapevine (Vitis amurensis rupr. cv.) involved in cold responsive gene expression in Arabidopsis thanliana. Plant Mol Biol Rep, 2015, 33: 557–568. [17] Min H J, Jung Y J, Kang B G, Kim W T. CaPUB1, a hot pepper U-box E3 ubiquitin ligase, confers enhanced cold stress tolerance and decreased drought stress tolerance in transgenic rice (Oryza sativa L.). Mol Cells, 2016, 39: 250–257.
[18] 黄喆, 王保云, 刘箐, 余艺涛, 李魏, 吕军. 植物U-box蛋白在抗病抗逆反应中的功能研究进展. 基因组学与应用生物学, 2020, 39: 5803–5808.
[19] 孙一丁, 杨奕, 刘畅媛, 马继琼, 许明辉. 水稻酵母双杂交文库构建及PID2胞内结构域互作蛋白的筛选. 分子植物育种, 2022, 20: 3931–3937. [20] Yoo Y H, Jiang X, Jung K H. An abiotic stress responsive U-box E3 ubiquitin ligase is involved in OsGI-mediating diurnal rhythm regulating mechanism. Plants, 2020, 9: 1071. [21] Vandesteene L, López-Galvis L, Vanneste K, Feil R, Maere S, Lammens W, Rolland F, Lunn J E, Avonce N, Beeckman T, et al. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis. Plant Physiol, 2012, 160: 884–896.
[22] 杜姣林, 蔺新兰, 马豫皖, 陈己任, 陈海霞, 李玉帆. 植物海藻糖-6-磷酸合成酶基因研究进展. 植物科学学报, 2023, 41: 411–420.
[23] 胡利伟, 崔大勇, 臧爱萍, Neill Steven, 蔡伟明. 生长素介导OsRGP1和OsSuS参与水稻地上部基部向重陛弯曲生长. 分子细胞生物学报, 2009, 42: 27–34.
[24] 孙亚丽, 唐家琪, 毛馨晨, 王子瑞, 张超, 于恒秀. 植物维生素B1生物合成及生物强化的研究进展. 安徽农业科学, 2024, 52(2): 5–9. [25] Boubakri H, Gargouri M, Mliki A, Brini F, Chong J L, Jbara M. Vitamins for enhancing plant resistance. Planta, 2016, 244: 529–543. [26] Guan J C, Hasnain G, Garrett T J, Chase C D, Gregory J, Hanson A D, McCarty D R. Divisions of labor in the thiamin biosynthetic pathway among organs of maize. Front Plant Sci, 2014, 5: 370. [27] Zarepour M, Simon K, Wilch M, Nieländer U, Koshiba T, Seo M, Lindel T, Bittner F. Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. Plant Mol Biol, 2012, 80: 659–671. [28] Shi X Y, Tian Q X, Deng P, Zhang W H, Jing W. The rice aldehyde oxidase OsAO3 gene regulates plant growth, grain yield, and drought tolerance by participating in ABA biosynthesis. Biochem Biophys Res Commun, 2021, 548: 189–195. [29] Ding X H, Cao Y L, Huang L L, Zhao J, Xu C G, Li X H, Wang S P. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. Plant Cell, 2008, 20: 228–240. [30] Jiang Z R, Wang M, Nicolas M, Ogé L, Pérez-Garcia M D, Crespel L, Li G H, Ding Y F, Le Gourrierec J, Grappin P, et al. Glucose-6-phosphate dehydrogenases: the hidden players of plant physiology. Int J Mol Sci, 2022, 23: 16128. [31] Chen L, Kuai P, Ye M F, Zhou S X, Lu J, Lou Y G. Overexpression of a cytosolic 6-phosphogluconate dehydrogenase gene enhances the resistance of rice to Nilaparvata lugens. Plants, 2020, 9: 1529. [32] Zhuang X L, Jiang J F, Li J H, Ma Q B, Xu Y Y, Xue Y B, Xu Z H, Chong K. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J, 2006, 48: 581–591. [33] Zhuang X, Xu Y, Chong K, Lan L, Xue Y, Xu Z. OsAGAP, an ARF-GAP from rice, regulates root development mediated by auxin in Arabidopsis. Plant Cell Environ, 2005, 28: 147–156.
[34] 穆天骄. OsDi19调控水稻耐旱的功能研究. 山东大学硕士学位论文, 山东济南, 2022. |
[1] | 朱建平, 李文奇, 许扬, 王芳权, 李霞, 蒋彦婕, 范方军, 陶亚军, 陈智慧, 吴莹莹, 杨杰. 水稻粉质胚乳突变体we2的表型分析与基因定位[J]. 作物学报, 2025, 51(4): 1110-1117. |
[2] | 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913. |
[3] | 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796. |
[4] | 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686. |
[5] | 刘建国, 陈冬东, 陈玉玉, 易琴琴, 李清, 徐正进, 钱前, 沈兰. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51(3): 598-608. |
[6] | 王语新, 陈天羽, 翟红, 张欢, 高少培, 何绍贞, 赵宁, 刘庆昌. 甘薯激酶基因IbHT1的克隆及抗旱性功能鉴定[J]. 作物学报, 2025, 51(2): 301-311. |
[7] | 张正康, 苏延红, 阮孙美, 张敏, 张攀, 张慧, 曾千春, 罗琼. 疣粒野生稻中OgXa13的克隆和功能研究[J]. 作物学报, 2025, 51(2): 334-346. |
[8] | 李春梅, 陈洁, 郎兴宣, 庄海民, 朱靖, 杜梓君, 冯浩天, 金涵, 朱国林, 刘凯. 水稻矮化多分蘖基因DT1的图位克隆与功能分析[J]. 作物学报, 2025, 51(2): 347-357. |
[9] | 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417. |
[10] | 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188. |
[11] | 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322. |
[12] | 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357. |
[13] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[14] | 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038. |
[15] | 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919. |
|