欢迎访问作物学报,今天是

作物学报

• •    

OsST41调控水稻苗期耐盐性的功能分析

覃奕琰,付瑶,苏畅,李娜,徐静茹,程笑然,张琪*,赵明辉*   

  1. 沈阳农业大学水稻研究所 / 东北粳稻遗传改良与优质高效生产省部共建协同创新中心, 辽宁沈阳110866
  • 收稿日期:2025-06-20 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-06
  • 通讯作者: 张琪, E-mail: zq1102@syau.edu.cn; 赵明辉, E-mail: mhzhao@syau.edu.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2024YFD1201004)资助。

Functional analysis of OsST41 regulating salt tolerance in rice seedlings

Qin Yi-Yan,Fu Yao,Su Chang,Li Na,Xu Jing-Ru,Cheng Xiao-Ran,Zhang Qi*,Zhao Ming-Hui*   

  1. Rice Research Institute, Shenyang Agricultural University / Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang 110866, Liaoning, China
  • Received:2025-06-20 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-06
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2024YFD1201004).

摘要: 水稻是我国第一大粮食作物,其产量易受土壤盐碱化影响。本课题组前期通过全基因组关联分析(GWAS)定位到水稻耐盐候选基因OsST41。本研究克隆了OsST41 (Os07g0598200)基因,通过生物信息学分析发现该基因编码序列全长747 bp,编码248个氨基酸,OsST41蛋白含有F-box保守结构域,并与拟南芥中调控非生物胁迫响应的EDL3蛋白同源。亚细胞定位结果表明,OsST41蛋白定位于细胞核。qRT-PCR分析显示,OsST41基因在水稻的各生育时期均有表达,并于苗期盐胁迫后在叶片中的表达量显著升高。利用CRISPR/Cas9基因编辑技术构建了OsST41基因敲除突变体。耐盐性分析发现,OsST41基因敲除突变体耐盐性显著下降,盐胁迫条件下突变体的Na?/K?比率显著高于野生型。生理指标检测结果发现,盐胁迫下突变体丙二醛含量显著高于野生型,超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性和脯氨酸(Pro)含量均低于野生型。qRT-PCR结果显示,抗氧化相关酶编码基因OsALDH22A1OsGPX5的表达水平在突变体中显著降低。这些结果表明,突变体抗氧化系统受损,活性氧(ROS)清除能力减弱。本研究初步揭示了OsST41基因参与调控水稻耐盐性,为进一步解析水稻OsST41响应盐胁迫的分子调控机制奠定了基础。

关键词: 盐胁迫, 水稻, 生理指标, 亚细胞定位, OsST41

Abstract:

Rice is the most widely cultivated grain crop in China, and its yield is highly susceptible to soil salinization. In our previous study, a candidate gene associated with salt tolerance in rice, OsST41, was identified through a genome-wide association study (GWAS). In the present study, we cloned the OsST41 (Os07g0598200) gene. Bioinformatic analysis showed that the gene has a full-length coding sequence of 747 bp and encodes a 248-amino-acid protein containing a conserved F-box domain. The OsST41 protein shares homology with the EDL3 protein in Arabidopsis thaliana, which is known to be involved in the regulation of abiotic stress responses. Subcellular localization analysis revealed that OsST41 is localized in the nucleus. qRT-PCR analysis indicated that OsST41 is expressed at all developmental stages of rice, and its expression in leaves is significantly upregulated under salt stress at the seedling stage. To investigate the function of OsST41 in salt tolerance, we generated a knockout mutant using CRISPR/Cas9 gene-editing technology. The salt tolerance of the OsST41 knockout mutant was significantly reduced, and the Na+/K+ ratio under salt stress was markedly higher than that of the wild type. Physiological measurements showed that, under salt stress, the mutant had significantly higher malondialdehyde (MDA) content and lower activities of superoxide dismutase (SOD), catalase (CAT), and proline (Pro) content compared to the wild type. Furthermore, qRT-PCR analysis revealed that the expression levels of antioxidant-related genes OsALDH22A1 and OsGPX5 were significantly downregulated in the mutant. These results suggest that the antioxidant defense system is impaired in the mutant, leading to reduced reactive oxygen species (ROS) scavenging capacity. Collectively, our findings provide preliminary evidence that OsST41 plays a positive regulatory role in rice salt tolerance, laying foundation for further exploration of its molecular mechanisms in response to salt stress.

Key words: salt stress, rice, physiological indicators, subcellular localization, OsST41

[1]Dorward A. The short- and medium- term impacts of rises in staple food prices. Food Secur, 2012, 4: 633–645.
[2]彭既明. 耐盐(碱)水稻研发的建议. 中国稻米, 2019, 25(1): 7–9.
Peng J M. Suggestions for developing saline-alkaline tolerant rice. China Rice, 2019, 25(1): 7–9 (in Chinese with English abstract).
[3]李微. 盐胁迫对水稻种子萌发及幼苗生长的影响. 中国农业科学院硕士学位论文, 北京, 2011.
Li W. Effects of Salt Stress on Seed Germination and Seedling Growth of Rice. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2011 (in Chinese with English abstract).
[4]Yang Y Q, Guo Y. Unraveling salt stress signaling in plants. J Integr Plant Biol, 2018, 60: 796–804.
[5]Ganapati R K, Naveed S A, Zafar S, et al. Saline-alkali tolerance in rice: physiological response, molecular mechanism, and QTL identification and application to breeding. Rice Sci, 2022, 29: 412–434.
[6]曲梦宇, 许惠滨, 陈静, 等. 水稻耐盐分子机制与分子改良. 植物遗传资源学报, 2022, 23: 644–653.
Qu M Y, Xu H B, Chen J, et al. Molecular mechanisms and improvement of salinity tolerance in rice. J Plant Genet Resour, 2022, 23: 644–653 (in Chinese with English abstract).
[7]王洋, 张瑞, 刘永昊, 等. 水稻对盐胁迫的响应及耐盐机理研究进展. 中国水稻科学, 2022, 36: 105–117.
Wang Y, Zhang R, Liu Y H, et al. Rice response to salt stress and research progress in salt tolerance mechanism. Chin J Rice Sci, 2022, 36: 105–117 (in Chinese with English abstract).
[8]Cheeseman J M. The integration of activity in saline environments: problems and perspectives. Funct Plant Biol, 2013, 40: 759–774.
[9]Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 2004, 166: 3–16.
[10]巫明明, 曾维, 翟荣荣, 等. 水稻耐盐分子机制与育种研究进展. 中国水稻科学, 2022, 36: 551–561.
Wu M M, Zeng W, Zhai R R, et al. Research progress in molecular mechanism and breeding status of salt tolerance in rice. Chin J Rice Sci, 2022, 36: 551–561 (in Chinese with English abstract).
[11]Garg A K, Kim J K, Owens T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 2002, 99: 15898–15903.
[12]Qin H, Huang R F. The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response. Mol Breed, 2020, 40: 47.
[13]Miller G, Suzuki N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ, 2010, 33: 453–467.
[14]Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci, 2014, 2: 53.
[15]Ben Abdallah S, Aung B, Amyot L, et al. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol Plant, 2016, 38: 72.
[16]Jain M, Nijhawan A, Arora R, et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol, 2007, 143: 1467–1483.
[17]Duplan V, Rivas S. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. Front Plant Sci, 2014, 5: 42.
[18]Mineri L, Cerise M, Giaume F, et al. Rice florigens control a common set of genes at the shoot apical meristem including the F-BOX BROADER TILLER ANGLE 1 that regulates tiller angle and spikelet development. Plant J, 2023, 115: 1647–1660.
[19]Yuan J Y, Chen S S, Jiao W, et al. Both maternally and paternally imprinted genes regulate seed development in rice. New Phytol, 2017, 216: 373–387.
[20]Kim Y Y, Cui M H, Noh M S, et al. The FBA motif-containing protein AFBA1 acts as a novel positive regulator of ABA response in Arabidopsis. Plant Cell Physiol, 2017, 58: 574–586.
[21]Yan Y S, Chen X Y, Yang K, et al. Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice. Mol Plant, 2011, 4: 190–197.
[22]Xu G Y, Cui Y C, Wang M L, et al. OsMsr9, a novel putative rice F-box containing protein, confers enhanced salt tolerance in transgenic rice and Arabidopsis. Mol Breed, 2014, 34: 1055–1064.
[23]Wang X J, Chen Y M, Liu S T, et al. Functional dissection of rice jasmonate receptors involved in development and defense. New Phytol, 2023, 238: 2144–2158.
[24]Wang X L, Li J Q, Sun J, et al. Mining beneficial genes for salt tolerance from a core collection of rice landraces at the seedling stage through genome-wide association mapping. Front Plant Sci, 2022, 13: 847863.
[25]Koops P, Pelser S, Ignatz M, et al. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot, 2011, 62: 5547–5560. 
[26]才晓溪, 胡冰霜, 沈阳, 等. GsERF6基因过表达对水稻耐盐碱性的影响. 作物学报, 2023, 49: 561–569.
Cai X X, Hu B S, Shen Y, et al. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice. Acta Agron Sin, 2023, 49: 561–569 (in Chinese with English abstract).
[27]李荣华, 夏岩石, 刘顺枝, 等. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9): 14–16.
Li R H, Xia Y S, Liu S Z, et al. CTAB-improved method of DNA extraction in plant. Res Explor Lab, 2009, 28(9): 14–16 (in Chinese with English abstract).
[28]陈高明. 水稻耐盐基因OsTUB1的图位克隆和功能分析. 南京农业大学博士学位论文, 江苏南京, 2022.
Chen G M. Map-based Cloning and Functional Analysis of a Salt Tolerance Gene OsTUB1 in Rice (Oryza sativa L.). PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract).
[29]许涛, 夏冬健, 万菁, et al. F-box蛋白参与植物逆境胁迫研究进展. 生物技术通报, 2021, 37(12): 205–211.
Xu T, Xia D J, Wan J, et al. Research progress of F-box protein involved in plant stress. Biotechnol Bull, 2021, 37(12): 205–211 (in Chinese with English abstract).
[30]程生海, 郭夏宇, 陶维旭, 等. 不同耐盐能力水稻品种响应盐胁迫的差异. 杂交水稻, 2024, 39(2): 97–104.
Cheng S H, Guo X Y, Tao W X, et al. Differences in response to salt stress of rice varieties with different salt tolerance. Hybrid Rice, 2024, 39(2): 97–104 (in Chinese with English abstract).
[31]Wei S Q, Chen M J, Wang F Y, et al. OsCaM1-1 is responsible for salt tolerance by regulating Na+/K+ homoeostasis in rice. Plant Cell Environ, 2025, 48: 1393–1408.
[32]Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141–1146.
[33]Peng L R, Xiao H J, Li R, et al. Potassium transporter OsHAK18 mediates potassium and sodium circulation and sugar translocation in rice. Plant Physiol, 2023, 193: 2003–2020.
[34]Sripinyowanich S, Klomsakul P, Boonburapong B, et al. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot, 2013, 86: 94–105.
[35]Yang S H, Niu X L, Luo D, et al. Functional characterization of an aldehyde dehydrogenase homologue in rice. J Integr Agric, 2012, 11: 1434–1444.
[36]Wang X, Fang G, Yang J, et al. A thioredoxin-dependent glutathione peroxidase (OsGPX5) is required for rice normal development and salt stress tolerance. Plant Mol Biol Rep, 2017, 35: 333–342.
[37]Sharma E, Bhatnagar A, Bhaskar A, et al. Stress-induced F-Box protein-coding gene OsFBX257 modulates drought stress adaptations and ABA responses in rice. Plant Cell Environ, 2023, 46: 1207–1231.

[1] 王婵, 吴莹莹, 李文奇, 李霞, 王芳权, 周彤, 杨杰. 基于HRM技术开发水稻抗条纹叶枯病基因STV11功能标记[J]. 作物学报, 2025, 51(9): 2547-2556.
[2] 陈惠莹, 何嘉欣, 朱斌, 黄士轩, 周星佑, 伍君权, 杨美艳. 水稻黄单胞菌噬菌体vB_XaS_HDB2的全基因组分析和生物学特性研究[J]. 作物学报, 2025, 51(8): 2087-2099.
[3] 杨海洋, 吴林宣, 李博纹, 石翰峰, 袁禧龙, 刘金朝, 蔡海荣, 陈诗怡, 郭涛, 王慧. 基于QTL定位发现的OsWRI3调控水稻种子的落粒性[J]. 作物学报, 2025, 51(7): 1712-1724.
[4] 李福媛, 杨奕, 马继琼, 许明辉, 林良斌, 孙一丁. 水稻OsPUB4基因克隆、激素诱导表达分析与互作蛋白筛选[J]. 作物学报, 2025, 51(6): 1690-1700.
[5] 雷松翰, 范骏扬, 车艳奕, 代永东, 郑雨萌, 田维江, 桑贤春, 王晓雯. 水稻内卷叶突变体acl3的鉴定及调控基因的功能分析[J]. 作物学报, 2025, 51(6): 1467-1479.
[6] 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298.
[7] 翁文安, 邢志鹏, 胡群, 魏海燕, 廖萍, 朱海滨, 瞿济伟, 李秀丽, 刘桂云, 高辉, 张洪程. 无人化旱直播水稻产量形成特征及其能量与经济效益研究[J]. 作物学报, 2025, 51(5): 1363-1377.
[8] 王梦宁, 谢可冉, 高逖, 王飞, 任孝俭, 熊栋梁, 黄见良, 彭少兵, 崔克辉. 水稻幼穗分化期至抽穗期高温对籽粒形态和充实的影响及其与粒重的关系[J]. 作物学报, 2025, 51(5): 1347-1362.
[9] 李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响[J]. 作物学报, 2025, 51(4): 1091-1101.
[10] 朱建平, 李文奇, 许扬, 王芳权, 李霞, 蒋彦婕, 范方军, 陶亚军, 陈智慧, 吴莹莹, 杨杰. 水稻粉质胚乳突变体we2的表型分析与基因定位[J]. 作物学报, 2025, 51(4): 1110-1117.
[11] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[12] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[13] 苏畅, 满福原, 王镜博, 冯晶, 姜思旭, 赵明辉. 铝胁迫下水稻osalr3突变体对外源有机酸和植物生长调节物质的响应[J]. 作物学报, 2025, 51(3): 676-686.
[14] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[15] 刘建国, 陈冬东, 陈玉玉, 易琴琴, 李清, 徐正进, 钱前, 沈兰. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51(3): 598-608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!