欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (01): 113-119.

• 研究论文 • 上一篇    下一篇

苗期干旱胁迫对不同抗旱花生品种生理特性、产量和品质的影响

严美玲;李向东*;林英杰;王丽丽;周录英   

  1. 山东农业大学农学院/山东省作物生物学重点实验室,山东泰安271018
  • 收稿日期:2005-11-25 修回日期:1900-01-01 出版日期:2007-01-12 网络出版日期:2007-01-12
  • 通讯作者: 李向东

Effects of Drought during Seedling Stage on Physiological Traits, Yield and Quality of Different Peanut Cultivars

YAN Mei-Ling,LI Xiang-Dong*,LIN Ying-Jie,WANG Li-Li,ZHOU Lu-Ying   

  1. The Key Laboratory of Crop Biology of Shandong/ College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2005-11-25 Revised:1900-01-01 Published:2007-01-12 Published online:2007-01-12
  • Contact: LI Xiang-Dong

摘要:

在人工控水条件下,研究了两个不同抗旱花生品种苗期干旱下的生理特性及其产量和品质。结果表明,随着干旱程度的增加,两品种叶片光合速率(Pn)逐渐下降,丙二醛(MDA)含量增加;解除干旱后,叶内MDA含量降低,Pn很快恢复到或超过对照水平,农大818的恢复能力强于鲁花11。适当干旱处理,可增加叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性,提高叶片可溶性蛋白质(Pr)含量,鲁花11以中轻度干旱(灌水60~80 mm),而农大818以中度干旱(灌水40~60 mm)时酶活性最强、Pr含量最高,同一干旱处理、特别重度干旱(灌水20 mm)处理的酶活性,农大818明显高于鲁花11;解除干旱后,两品种叶中SOD、POD、CAT活性和Pr含量显著降低,但农大818的酶活性仍高于鲁花11。随着苗期干旱程度的增加,花生荚果和籽仁产量降低,但农大818的降幅小于鲁花11;若苗期灌水量低于60~80 mm则影响产量。花生苗期中、轻度干旱胁迫可增加籽仁蛋白质含量,而对脂肪含量的影响不大;重度干旱明显降低籽仁脂肪含量、脂肪中油酸组分和O/L比值,增加亚油酸组分,但对蛋白质的影响较小。鲁花11以60~80 mm水分处理及农大818以40~60 mm水分处理时籽仁品质最佳。

关键词: 花生, 苗期干旱, 生理特性, 产量品质

Abstract:

Peanut is one of the ideal crops in dry farming. Drought is the main limit factor of peanut to increase yield and improve quality. Seedling stage is constantly hit by drought for summer peanut. In order to understand the suitable watering amount at peanut seedling stage, provide theoretical basis and technique for dry farming peanut producing the experiment was conducted with drought light-resistant peanut cv. Luhua 11 and drought resistant peanut cv. Nongda 818 from 2003 to 2004 in the experimental station of Shandong Agricultural University. Five treatments with watering 20 mm(serious drought stress), 40 mm(middle drought stress), 60 mm(slight-middle drought stress), 80 mm(slight drought stress) and 100 mm(CK) were made at 10 days after seedling(27 June) with three replicates in a randomized block design. The drought stress stopped at full-bloom stage(20 July) and then all treatments were irrigated 100 mm water at full-bloom stage, pod setting stage and pod filling stage separately. The results showed that the photosynthesis rate(Pn) decreased, and malondialdeyde (MDA) content increased remarkably with the drought degree raising. After rewatering, the MDA content decreased and Pn returned to the level of check rapidly, the recovery ability of Nongda 818 was bigger than that of Luhua 11. Suitable drought treatment could enhance the activities of superoxide dismutase(SOD), peroxidase (POD) and catalase (CAT), and increase the soluble protein content. The highest activities of SOD, POD, CAT and soluble protein content presented at the slight-middle drought treatment(watering 60–80 mm ) for Luhua 11, but at the middle drought treatment(watering 40–60 mm ) for Nongda 818. At the same drought treatment, especially at serious drought treatment(watering 20 mm), the activities of SOD, POD, CAT of Nongda 818 were obviously higher than that of Luhua 11. After rewatering, the activities of SOD, POD, CAT and soluble protein content reduced significantly, but the activities of SOD, POD, CAT of Nongda 818 were still higher than that of Luhua 11. With the drought degree raising, pod and kernel yields substantially decreased and the yield losses of Nongda 818 were less than that of Luhua 11. The irrigating amount at peanut seedling stage is no less than 60–80 mm to avoid the yield loss. Middle and slight drought stress at seedling stage could increase the protein content of peanut kernel, and have a little effect on fat content. Serious drought stress at seedling stage remarkably decreased oleic content and the ratio of oleic/linoleic(O/L), increased linoleic content of peanut kernel, and have a little effect on protein content. The optimal irrigating amount at seedling stage for the best kernel quality of Luhua 11 is 60–80 mm and that of Nongda 818 is 40–60 mm.

Key words: Peanut, Drought at seedling stage, Physiological traits, Yield and quality

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!