欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (06): 931-936.

• 研究论文 • 上一篇    下一篇

棉花叶绿素密度和叶片氮积累量的高光谱监测研究

黄春燕1;王登伟1,*;闫洁2;张煜星2;曹连莆1;程诚1   

  1. 1 新疆兵团绿洲生态农业重点实验室/石河子大学农学院;2 石河子大学生物工程学院,新疆石河子832003
  • 收稿日期:2006-08-22 修回日期:1900-01-01 出版日期:2007-06-12 网络出版日期:2007-06-12
  • 通讯作者: 王登伟

Monitoring of Cotton Canopy Chlorophyll Density and Leaf Nitrogen Accumulation Status by Using Hyperspectral Data

HUANG Chun-Yan1,WANG Deng-Wei1*,YAN Jie2,ZHANG Yu-Xing2,CAO Lian-Pu1,CHENG Cheng1   

  1. 1 Key Laboratory of Oasis Ecology Agriculture of Xinjiang Bingtuan/College of Agronomy, Shihezi University, Shihezi 832003, Xinjiang; 2 Academy of Biological Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
  • Received:2006-08-22 Revised:1900-01-01 Published:2007-06-12 Published online:2007-06-12
  • Contact: WANG Deng-Wei

摘要:

利用非成像高光谱仪,获取棉花不同品种、不同密度冠层关键生育时期的反射光谱数据,应用光谱多元统计分析技术,研究表明,棉花冠层叶绿素密度(CH.D)和叶片氮积累量(LNA)分别在反射光谱762 nm和763 nm处的相关系数达最大值(RCH.D= 0.8845**和RLNA= 0.7870**,n = 47);而一阶微分光谱数据对CH.D、LNA最敏感的波段均发生在750 nm处(RCH.D= 0.9098**和RLNA = 0.9164**,n = 47);采用47个建模样本的一阶微分光谱750 nm处的数值与棉花冠层CH.D建立线性相关模型方程,估算47个检验样本的棉花冠层CH.D,再根据CH.D与LNA建立的线性相关方程估算检验样本的LNA,47个检验样本的实测LNA与估测LNA极显著线性相关(R = 0.8982**,n = 94),模型方程的估算精度达86.3%,实测值与估算值的RMSE = 1.0155,相对误差为0.1380。说明基于高光谱数据的棉花冠层叶绿素密度的遥感估测,可以间接用于棉花冠层叶片氮积累量的监测研究。

关键词: 棉花, 高光谱, 叶绿素密度, 叶片氮积累量, 监测研究

Abstract:

Chlorophyll and nitrogen contents are important parameters as the indicators of crop photosynthesis productivity, state of growing and nutrition, and optimal diagnosis for crop nitrogenous fertilizer demands. In practical application process, testing nitrogen is more complicated than testing chlorophyll, and using chemicals are liable to pollute environment. Many researches show that chlorophyll content has a positive correlation with nitrogen content, so the status of nitrogen can be indicated by chlorophyll content or its elements. In the meantime, between chlorophyll content and hyperspectral characteristics, a positive correlation still exists, the status of nitrogen can be monitored by chlorophyll remote sensing. Traditionally, the status of chlorophyll density (CH.D) and leaf nitrogen accumulation (LNA) are studied by utilizing hyperspectral data, mainly focused on crops of wheat, rice and corn, mostly establishing a correlation model between hyperspectral data and one variable among CH.D and LNA. But it is scarce for combining CH.D and LNA together in the research, based on hyperspectral data monitoring state of crop canopy nutrition. This paper by utilizing non-imaging hyperspectral spectrometer, 8 cotton cultivars and two of them with 4 level densities planting in north XinJiang, and multivariate regression analysis method recorded multi-temporal hyperspectral data of canopy at cotton key growing stages and analyzed the correlation between reflectance and cotton canopy CH.D, LNA. The result showed that the maximum correlation coefficients between hyperspectral data and CH.D, LNA occurred at 762 and 763 nm (RCH.D = 0.8845**, RLNA = 0.787**, n = 47) respectively; the highest correlation coefficients between the first derivative spectral data and CH.D, LNA both occurred at 750 nm (RCH.D = 0.9098**, RLNA = 0.9164**, n = 47). Based on the first derivative data at 750 nm of modeling samples, we established the CH.D linear regression equation and estimated the CH.D of proving samples, then according to the model function between CH.D and LNA, estimated LNA of proving samples, correlation between tested LNA and estimated LNA was significant (R = 0.8982**, α = 1%, n = 94). The regression function accuracy was 86.2%, the RMSE was 1.0155, RE was 0.1380. The study shows that the status of cotton canopy leaf nitrogen accumulation can be monitored indirectly based on cotton chlorophyll density remote sensing.

Key words: Cotton, Hyperspectral, Chlorophyll density, Leaf nitrogen accumulation, Monitoring

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究[J]. 作物学报, 2021, 47(7): 1342-1350.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!