欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (11): 1834-1839.

• 研究论文 • 上一篇    下一篇

小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析

郝志;田纪春*;姜小苓   

  1. 作物生物学国家重点实验室/山东农业大学小麦品质育种室,山东泰安271018
  • 收稿日期:2007-03-19 修回日期:1900-01-01 出版日期:2007-11-12 网络出版日期:2007-11-12
  • 通讯作者: 田纪春

Analyses of Fe, Zn, Cu, and Mn Contents in Grains and Grouping Based on the Contents for Main Kindred Germplasm of Common Wheat (Triticum aestivum)

HAO Zhi,TIAN Ji-Chun*,JIANG Xiao-Ling   

  1. State Key Laboratory of Crop Biology/Group of Quality Wheat Breeding, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2007-03-19 Revised:1900-01-01 Published:2007-11-12 Published online:2007-11-12
  • Contact: TIAN Ji-Chun

摘要:

以19份小麦亲缘种及普通小麦中国春为材料,测定比较了籽粒的Fe、Zn、Cu、Mn含量,并进行了聚类分析。结果表明,Fe、Zn、Cu、Mn含量平均值分别为50.94、34.89、6.96和33.21 μg g-1,其改良潜力分别为121.94%、40.46%、41.17%和73.03%。根据Fe、Zn、Cu、Mn含量将供试材料均分为高、中、低3类,其中塔城高拉山小麦Fe含量高达124.32 μg g-1,为富Fe材料。富Zn材料有野生一粒小麦、野生二粒小麦等6个品种(系),均值为49.91 μg g-1。富Cu材料有分枝小麦和小黑麦(8X),均值为8.66 μg g-1。富Mn材料为斯卑尔脱小麦,含量高达63.85 μg g-1。不同倍性染色体倍性材料间,Fe、Zn和Mn含量均以四倍体小麦最高,Cu含量以八倍体小麦最高。不同染色体组间,AABB染色体组材料的Fe、Zn和Mn含量最高,其次是AA染色体组材料,Cu以AABBDDRR染色体组最高。这些结果可为小麦营养品质育种的亲本选择和有利基因的发掘和利用提供参考依据。

关键词: 小麦, 近缘种质, 微量元素

Abstract:

The mineral nutrition is an important aspect of wheat (Triticum aestivum L.) grain quality, and becomes one of the most important targets for breeding. The main kindred germplasm of common wheat, which carry many fine genes, act as important donors in the evolution and breeding of common wheat. To screen breeding materials from these kindred germplasm with high or low mineral element content, we assessed the content level of four essential elements (iron, zinc, copper, and manganese) in grain of 19 main kindred germplasm of common wheat including (T. boeoticum, T. monococcum, Ae. tauschii, Secale, Secale vaviloviim, T. dicoccodes, T. dicoccum, T. polonicum, T. carthlicum, T. turanicum, Ae. triuncialis, T. spelta, T. compactum, T. sphaeroccum, T. aestivum concv. ramulostachye, T. aestivum subsp. tibetanum, T. aestivum subsp. yunnanese, Triticale (6×), Triticale (8×), Chinese Spring.) in 2005–2006. The common wheat cultivar Chinese Spring was employed as control. After dry digestion, Fe, Zn, Cu, and Mn were determined by flame atomic accessory spectrometry (FAAS). The results showed that the mean content and the improving potential of all materials were 50.94 μg g-1 and 121.94% for Fe, 34.89 μg g-1 and 40.46% for Zn, 6.96 μg g-1 and 41.17% for Cu, 33.21 μg g-1 and 73.03% for Mn, respectively. Based on the contents of Fe, Zn, Cu, and Mn, all materials were classified into three groups by using clustered analysis. T. turanicum was classified as Fe rich material with the highest content of 124.32 μg g-1. T. boeoticum, T. monococcum, and other four samples were classified as Zn rich materials, whose Zn content on average was 49.91 μg g-1. T. aestivum concv. Ramulostachye, and Triticale (8×) were classified as Cu rich materials, whose Cu content on average was 8.66 μg g-1. T. spelta was classified as Mn rich materials, with the highest content of 63.85 μg g-1. The Tetraploid materials had the highest mean contents of Fe, Zn and Mn, and the Octoploid materials had the highest mean content of Cu. The materials with AABB genome had the highest mean contents of Fe, Zn, and Mn, followed by the materials with AA genome. The materials with AABBDDRR genome had the highest mean content of Cu. These results are useful for parent’s selection and utilization of fine genes in wheat.

Key words: Wheat, Kindred germplasm, Micronutrient

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!