欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (12): 1935-1942.

• 研究论文 • 上一篇    下一篇

小麦籽粒蛋白质含量高光谱预测模型研究

冯伟;姚霞;田永超;朱艳;刘小军;曹卫星*   

  1. 南京农业大学江苏省信息农业高技术研究重点实验室/农业部作物生长调控重点开放实验室,江苏南京210095
  • 收稿日期:2007-04-03 修回日期:1900-01-01 出版日期:2007-12-12 网络出版日期:2007-12-12
  • 通讯作者: 曹卫星

Predicting Grain Protein Content with Canopy Hyperspectral Remote Sensing in Wheat

FENG Wei,YAO Xia,TIAN Yong-Chao,ZHU Yan,LIU Xiao-Jun,CAO Wei-Xing*   

  1. Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province/Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2007-04-03 Revised:1900-01-01 Published:2007-12-12 Published online:2007-12-12
  • Contact: CAO Wei-Xing

摘要: 为定量分析小麦籽粒蛋白质含量、叶片氮素营养指标、冠层高光谱参数的相互关系,确立能够准确预测小麦籽粒蛋白质含量的敏感光谱参数和定量模型,2003—2006年在连续3个生长季不同小麦品种和不同施氮水平的4个大田试验条件下,于小麦不同生育期采集田间冠层高光谱数据并测定植株氮素含量和籽粒蛋白质含量。试验1以低蛋白质含量的宁麦9号和高蛋白质含量的豫麦34为材料,试验2以低、中、高蛋白质含量的宁麦9号、扬麦12和豫麦34为材料,试验3以低蛋白质含量的宁麦9号、中蛋白质含量的扬麦10号和淮麦20以及高蛋白质含量的徐州26为材料,试验4以低蛋白质含量的宁麦9号和中蛋白质含量的扬麦10号为材料。结果显示,不同品种小麦的籽粒蛋白质含量随施氮水平的提高而增加,可以通过开花期叶片氮含量和氮积累量进行可靠的估测。而不同试验条件下的叶片氮含量和氮积累量可以基于统一的光谱参数进行定量反演,其中基于REPle和mND705的叶片氮含量监测模型及基于SDr/SDb和FD742的叶片氮积累量监测模型,具有可靠的预测性和适用性。根据特征光谱参数—叶片氮素营养—籽粒蛋白质含量这一技术路径,以叶片氮素营养为交接点将两部分模型链接,建立了基于开花期高光谱参数的小麦籽粒蛋白质含量预测模型,经独立资料检验表明,以参数mND705、REPle、SDr/SDb和FD742为变量建立成熟期籽粒蛋白质含量预报模型均给出较好的检验结果。因此,利用开花期关键特征光谱指数可以直接评价小麦成熟期籽粒蛋白质含量状况,其中基于mND705参数的预测模型更为准确可靠。

关键词: 小麦, 氮素营养, 籽粒蛋白质含量, 高光谱遥感, 预测模型

Abstract: Grain protein content is an important index indicating wheat quality status, and non-destructive and quick assessments of grain protein content are necessary for cultural regulation and quality classification in wheat production. The objectives of this study were to determine the relationships of grain protein content to ground-based canopy hyper-spectral reflectance and spectral parameters, and to derive regression equations for predicting grain protein content in winter wheat (Triticum aestivum L.) with canopy hyper-spectral remote sensing, by four field experiments with different wheat cultivars and nitrogen levels across three growing seasons, and by time-course measurements on canopy hyperspectral reflectance, plant dry weight, nitrogen content and grain protein content during the experiment periods in 2003–2006. In experiment one and four two cultivars of Ningmai 9 and Yumai 34 was used as low and high protein types respectively. In experiment two, Yangmai 12 was added as medium protein type cultivar. In experiment three, the high protein type cultivar altered for Xuzhou 26, and medium type cultivar for Yangmai 10 and Huaimai 20. The results showed that the grain protein content at maturity in wheat increased with nitrogen rate promotion, and could be well estimated by plant nitrogen nutrition status such as leaf N content and leaf N accumulation at anthesis. The regression analyses between vegetation indices developed and leaf N nutrition indices such as leaf N content and leaf N accumulation indicated that several key spectral parameters could be accurately used to estimate the changes in leaf N status across different growth stages, nitrogen levels and growing seasons, e.g., REPle and mND705 could be used to leaf nitrogen content, and SDr/SDb and FD742 to leaf nitrogen accumulation. The total predicting models on grain protein content at maturity were constructed based on canopy hyper-spectral parameters at anthesis by linking the above two models with leaf N nutrition as intersection in wheat. Testing of the predicting models with independent datasets indicated that the spectral indices of REPle, mND705, SDr/SDb, and FD742 could be used to accurately estimate grain protein contents in wheat. It can be concluded that the grain protein content at maturity in wheat could be predicted directly by key vegetation indices at anthesis, with more reliable estimation from mND705.

Key words: Wheat, Nitrogen nutrition, Grain protein content, Hyper-spectral remote sensing, Prediction model

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!