欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (02): 318-325.doi: 10.3724/SP.J.1006.2008.00318

• 耕作栽培·生理生化 • 上一篇    下一篇

边缘细胞对大豆根尖铝毒害的缓解

李荣峰1,2;蔡妙珍1;刘鹏1,*;徐根娣1;梁和2;周主贵2   

  1. 1 浙江师范大学植物学重点实验室, 浙江金华321004; 2 广西大学农学院, 广西南宁530005

  • 收稿日期:2006-12-04 修回日期:1900-01-01 出版日期:2008-02-12 网络出版日期:2008-02-12
  • 通讯作者: 刘鹏

Border Cells Alleviating Aluminum Toxicity in Soybean Root Tips

LI Rong-Feng12,CAI Miao-Zhen1,LIU Peng1*,XU Gen-Di1,LIANG He2,ZHOU Zhu-Gui2   

  1. 1 Key Laboratory of Botany, Zhejiang Normal University, Jinhua 321004, Zhejiang; 2 Agricultural College of Guangxi University, Nanning 530005, Guangxi, China

  • Received:2006-12-04 Revised:1900-01-01 Published:2008-02-12 Published online:2008-02-12
  • Contact: LIU Peng

摘要:

以大豆[Glycine max (L.) Merrill]浙春3号为试验材料, 采用静置培养(保持边缘细胞附于根尖)和振荡培养(移除根尖边缘细胞), 测定边缘细胞数目和活性、根相对伸长率和根内酶的活性, 研究了边缘细胞对大豆根尖铝毒害的缓解效应。结果显示, 大豆发育过程中存活的边缘细胞数与总数之比达60%~80%, 50~400 mmol L-1 Al3+胁迫12 h能诱导边缘细胞从根尖脱落, 200~400 μmol L-1 Al3+胁迫24 h对边缘细胞的发育有抑制作用。Al3+处理抑制根伸长, 移除边缘细胞的根相对伸长率低于保留边缘细胞的根。0~100 mmol L-1 Al3+胁迫12 h, 0和50 mmol L-1Al3+胁迫24 h, 具有边缘细胞的大豆根系的POD、SOD活性及蛋白质含量显著高于移除边缘细胞的根内酶活性和蛋白质含量, 但200和400 mmol L-1 Al3+处理12 h, 100~400 mmol L-1 Al3+处理24 h时, 根尖有无边缘细胞对根系的酶活性及蛋白质含量影响不显著。说明低浓度Al3+胁迫下, 大豆通过增加边缘细胞数目、提高根尖蛋白质含量, 维持较高水平的POD、CAT和SOD活性来对抗铝毒胁迫, 以缓解植物的铝毒害。

关键词: 边缘细胞, 大豆, 铝毒, 缓解效应

Abstract:

Root border cell (BC) is a group of cells from the apex of root, which has been considered to play a vital role in protecting root tip from extracellular biotic and abiotic stresses. It is known that the BC may secrete saccharide to chelate Al3+ and alleviate cell damage under aluminum stress. In this paper, we aimed to reveal the effects of root BC on alleviation of aluminum toxicity to root tips with soybean [Glycine max (L.) Merrill] cultivar Zhechun 3 during the development of roots. The BC number, activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) as well as protein content were measured under 0 (CK), 50, 100, 200, and 400 μmol L-1 Al3+ stress for 12 and 24 h respectively, with static culture (to maintain border cells adhered to root tips) and shaking culture (to remove border cells from root tips completely). The results showed that the viable border cells accounted for 60%–80% when root length was 5 mm. 50–400 mmol L-1 Al3+ treatment for 12 h increased the number of border cells, but inhibition of border cell development by Al3+ turned up after 200, 400 mmol L-1 Al3+ treatment for 24 h. When soybean roots were cultivated by shaking to remove border cells from root tips, root elongation was decreased with increasing Al3+ concentrations. However, this kind of inhibition of root growth was alleviated under static culture. At the same time, POD, CAT (under Al stress for 12 h), SOD activities and protein content were higher significantly than those under shaking culture withlower Al3+ concentration (0–100 mmol L-1 Al3+ treatment for 12 h and 0, 50 mmol L-1 Al3+ treatment for 24 h) stress. And no significant difference in POD, SOD activities and protein content was observed between static culture and shaking culture under higher Al3+ concentration (200, 400 mmol L-1 Al3+ treatment for 12 h and 100–400 mmol L-1 Al3+ treatment for 24 h) (P>0.05). The results suggested that border cells adhered to the root tips can significantly affect root relative elongation rate, POD, CAT, SOD activities and protein content of soybean root tip, and alleviate the toxicity Al3+ to plant root tips through increasing the number of border cells, enhancing the protein content of root tips and maintaining higher POD and SOD activities.

Key words:

Border cell, Soybean, Aluminum toxicity, Alleviating effect

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!