欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (05): 818-822.doi: 10.3724/SP.J.1006.2008.00818

• 耕作栽培·生理生化 • 上一篇    下一篇

外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响

邵瑞鑫;上官周平   

  1. 中国科学院水土保持研究所, 陕西杨凌712100
  • 收稿日期:2007-09-17 修回日期:1900-01-01 出版日期:2008-05-12 网络出版日期:2008-05-12
  • 通讯作者: 上官周平

Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress

SHAO Rui-Xin,SHANG-GUAN Zhou-Ping   

  1. Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling 712100, Shaanxi, China
  • Received:2007-09-17 Revised:1900-01-01 Published:2008-05-12 Published online:2008-05-12
  • Contact: SHANG-GUAN Zhou-Ping

摘要: 以-0.5 MPa PEG模拟干旱胁迫, 0.1 mmol L-1 SNP作为外源NO供体, 从荧光诱导动力学角度研究了干旱胁迫下SNP对小麦光合色素含量的变化和PS II光能利用能力的影响。结果显示, 干旱胁迫虽然引起光合色素含量的增加, 却减少了PS II反应中心的开放比例(qP), 从而限制PS II对光能的利用(F’v/F’m)和光合功能的正常运行(LPFD)。经SNP和PEG同时处理的小麦光合色素含量明显增加, 细胞膜相对透性降低, 避免因干旱引起的光合功能的限制(LPFD); SNP还能增加受旱小麦PS II开放反应中心的比例(qP), 使更多的光能传递给PS II反应中心, 减少激发能用于非光化学反应的热耗散(NPQ), 从而促使更多的激发能用于光化学反应(F’v/F’m)。另外, SNP减轻了干旱胁迫对PS II反应中心施加的激发压力, 引起QA的还原程度(1-qP)降低。因此, 干旱条件下外源NO供体SNP可能参与了受旱小麦光合色素的合成和PS II对光能的利用。

关键词: 硝普钠(SNP), 水分胁迫, 光合色素, PS II, 光能利用能力, 小麦

Abstract: Nitric oxide (NO) has emerged as a key molecule involving in the regulation of various abiotic stresses that induces physiological responses in plants. NO acts as an antioxidant to protect chloroplast from oxidative damages by maintaining chloroplast membrane intactness, thus keeps high activity of PS II. The experiment was conducted under PEG stress of -0.5 MPa, while we chose 0.1 mmol L-1 sodium nitroprusside (SNP) as NO donor. The effects of SNP on the content of photosynthetic pigments and the ability of utilizing the light in PS II of winter wheat (Triticum aestivum L.) under drought stress were studied through chlorophyll fluorescence kinetic technique. The results showed that the content of photosynthetic pigment increased, but the pro-portion of opened PSII reaction centers (indicated by qP) decreased under drought stress, thus drought restricted the utilization of light-energy in PS II (F’v/F’m) and the exertion of photosynthetic function (LPFD). SNP could help to increase photosynthetic pig-ment content, and decrease the cell permeability, thus avoided decreasing the confined value of photosynthetic function (LPFD) by drought. Furthermore, SNP increased the proportion of opened PS II reaction centers (indicated by qP), leading to transference of the more excited light-energy to PS II function center, decreased the dissipation of excited energy in antenna pigments (NPQ), which increased the more absorbed light to participate in photochemical reaction (F’v/F’m). In addition, SNP alleviated the excited pressure in PS II reaction center imposed by drought and lowered the deoxidization of QA (1 - qP). Therefore, exogenous nitric oxide donor (SNP) may participate in the synthesis of photosynthetic pigments and the utilization of light-energy in PS II of wheat under drought stress.

Key words: Sodium nitroprusside (SNP), Water stress, Photosynthetic pigment, PS II, Light use capability, Wheat

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!