欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (10): 1688-1695.doi: 10.3724/SP.J.1006.2008.01688

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆(Glycine max) GmDREB5互作蛋白GmGβ1的筛选及鉴定

于月华1,2;陈明2,*;李连城2;徐兆师2;刘阳娜2;曲延英1;曹新有2;马有志2,*   

  1. 1 新疆农业大学农学院, 新疆乌鲁木齐830052; 2 国家农作物基因资源与基因改良重大科学工程 / 农业部作物遗传育种重点开放实验室 / 中国农业科学院作物科学研究所, 北京100081
  • 收稿日期:2008-01-29 修回日期:1900-01-01 出版日期:2008-10-12 网络出版日期:2008-10-12
  • 通讯作者: 陈明

Isolation and Identification of a GmGβ1 Interacting Protein with GmDREB5 Protein in Soybean (Glycine max)

YU Yue-Hua12,CHEN Ming2*,LI Lian-Cheng2,XU Zhao-Shi2,LIU Yang-Na2,QU Yan-Ying1,CAO Xin-You2,MA You-Zhi2*   

  1. 1 Agronomy College, Xinjiang Agricultural University, Urumqi 830052, Xinjiang; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2008-01-29 Revised:1900-01-01 Published:2008-10-12 Published online:2008-10-12
  • Contact: CHEN Ming

摘要: 从大豆(Glycine max)中克隆了一个与抗逆相关的DREB (Dehydration Responsive Element Binding Protein) 基因GmDREB5。功能分析证明, GmDREB5基因能够显著提高烟草的抗旱性和耐盐性。为了筛选GmDREB5的互作蛋白, 采用酵母双杂交系统以GmDREB5蛋白73~226位氨基酸区段为诱饵筛选干旱处理的大豆cDNA文库, 发现一个互作蛋白含有保守的WD40结构域, 与棉花(Gossypium hirsutum)和水稻(Oryza sativa)的G蛋白β亚基分别具有61%和52%的同源性, 说明蛋白可能是一类新的大豆G蛋白β亚基, 将其定名为GmGβ1。将GmDREB5与GmGβ1共转化酵母菌株AH109, 转化的酵母能够在四营养缺陷型培养基上(SD/ trp- leu- his- ade-)正常生长, 而对照不能生长; 同时, 共转化的酵母能够激活LacZ报告基因的表达, 证明GmGβ1与GmDREB5之间存在相互作用。表达特性分析表明, GmGβ1基因受干旱、低温、高盐等胁迫和激素ABA处理的诱导而表达, 证明GmGβ1不仅参与植物对非生物胁迫的响应, 同时参与对GmDREB5蛋白水平的调控。

关键词: 大豆, DREB基因, 酵母双杂交系统, 互作蛋白, G蛋白β亚基

Abstract: It is well know that the DREB (dehydration responsive element binding protein) transcription factors in the AP2/ERF family play important roles in the regulation of plant stress responses, hormone responses and so on. GmDREB5, a novel DREB homologous gene, was isolated from soybean (Glycine max) and transferred into tobacco in our previous study. To investigate its function, the T2 transgenic tobacco plants with GmDREB5 and the wild type plants were inoculated on MS medium with 100 mmol L-1 NaCl and 2% PEG, and their phenotypes were observed 40 days later. The results showed that the growth of the transgenic plants was more vigorous, and their roots were longer on the medium containing 2% PEG than those of wild type plants. The germination rate of transgenic plants (75%) was five-fold higher than that of the wild type plants (15%) on the medium containing NaCl, indicating that the over-expression of GmDREB5 improved the tolerances to both drought and salt stresses. The interacting proteins of GmDREB5 was attained by screening the cDNA library of soybean under drought and identified by yeast-two-hybrid system. It was found that there existed conservative domain WD40 in the interacting proteins,and which shared 61% and 52% similarity of the amino acid sequence with G protein β subunit in cotton (Gossypium hirsutum) and rice (Oryza sativa), respectively, The interacting protein with GmDREB5, named GmGβ1, was isolated and proven to be a G protein β subunit in soybean. The prey vector containing GmGβ1 and bait vector pGBKT7-IIR were co-transformed into yeast AH109, then incubated on mediums with shortage of four components (SD/ trp- leu- his- ade-) for 3–5 days, and the results showed that the thansformants but the contorol grew normally ,and could activate the expression of the downstream reporter gene LacZ, which performed interaction between GmDREB5 and GmGβ1. Further analyses showed that the expression of GmGβ1 gene in soybean was induced by drought, high salt, cold stresses and ABA treatment. These results suggested that GmGβ1 might involve in not only response to abiotic stress but also regulation of GmDREB5 by interacting in soybean.

Key words: Soybean, DREB gene, Yeast two-hybrid system, Interaction protein, G protein β subunit

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!