欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (10): 1770-1780.doi: 10.3724/SP.J.1006.2008.01770

• 耕作栽培·生理生化 • 上一篇    下一篇

棉花不同类型品种耐低钾能力的差异

田晓莉;王刚卫;杨富强;杨培珠;段留生;李召虎   

  1. 中国农业大学作物化学控制研究中心 / 农业部作物栽培与耕作学重点开放实验室 / 植物生理学与生物化学国家重点实验室, 北京100193
  • 收稿日期:2008-02-02 修回日期:1900-01-01 出版日期:2008-10-12 网络出版日期:2008-10-12
  • 通讯作者: 田晓莉

Differences in Tolerance to Low-Potassium Supply among Different Types of Cultivars in Cotton (Gossypium hirsutum L.)

TIAN Xiao-Li,WANG Gang-Wei,YANG Fu-Qiang,YANG Pei-Zhu,DUAN Liu-Sheng,LI Zhao-Hu   

  1. Center of Crop Chemical Control, Key Laboratory of Crop Cultivation and Farming System / State Key Laboratory of National Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
  • Received:2008-02-02 Revised:1900-01-01 Published:2008-10-12 Published online:2008-10-12
  • Contact: TIAN Xiao-Li

摘要: 以2004年我国棉区主栽的转基因抗虫棉与非抗虫棉、常规棉与杂交棉以及不同熟性的48个品种/杂交种/品系为材料, 对室内液体培养条件(钾胁迫浓度为0.02 mmol L-1)下幼苗和田间缺钾土壤(速效钾含量为59.88 mg kg-1)上成株的耐低钾能力进行了比较。结果表明, 抗虫棉组在苗期低钾条件下的生物量、吸钾量和钾利用指数以及田间缺钾土壤上的产量器官干重分别显著或极显著低于非抗虫棉组20.1%、15.0%、23.7%和20.9%, 而且苗期生物量最低的5个品种均为抗虫棉, 田间产量器官干重最低的5个品种中4个为抗虫棉; 杂交棉组的上述各指标分别显著或极显著高于常规棉组28.0%、19.9%、26.4%和43.2%, 而且苗期生物量和田间产量器官干重最高的5个品种中各有4个为杂交棉; 此外, 抗虫棉耐低钾的杂种优势强于非抗虫棉, 如杂交抗虫棉的上述各指标分别较常规抗虫棉显著或极显著提高37.0%、24.6%、44.3%和59.4%, 而非抗虫棉组的杂交棉只有钾胁迫下的苗期生物量和田间产量器官干重显著高于常规棉27.7%和29.9%; 品种熟性不影响棉花的耐低钾能力; 各类型品种内部的耐低钾能力也存在显著的品种差异, 常规抗虫棉耐低钾能力强的品种(系), 其苗期生物量和田间产量器官干重与常规非抗虫棉和杂交抗虫棉耐低钾能力中等的杂交种相当。

关键词: 棉花, 品种类型, 耐低钾, 差异

Abstract: Commercial cotton production is currently limited by varying levels of potassium (K) deficiency in China. Investigating tolerance to low-potassium (TTLP) of different types of cultivars is important for choosing the adaptive cultivars to guide the potassium fertilizer application in cotton production. Forty-eight cotton cultivars, mainly predominant cultivars/lines developed in China in 2004, were classified into transgenic insect-resistant cotton (TIRC, thirty-three cultivars) and non-insect-resistant cotton (NIRC, fifteen cultivars) / conventional cotton (CC, thirty-three cultivars) and hybrid cotton (HC, fifteen cultivars) / different-maturity cotton. The dry weight (DW), K+ absorption amount (KAA) and internal utilization index (total plant biomass produced per unit K concentration, KUI) of seedlings in a low K+ (0.02 mmol L-1) solution and dry weight of reproductive organs (FRDW, including squares, flowers and uncracked and cracked bolls) in a field with potassium-deficient soil (59.88 mg kg-1) were compared among different types of cultivars. The results indicated that TTLP of TIRC was inferior as compared with that of NIRC, and DW, KAA and KUI at seedling stage and FRDW in a field decreased by 20.1% (P<0.01), 15.0% (P<0.05), 23.7% (P<0.01) and 20.9% (P<0.05), respectively. Additionally, five cultivars concerning minimum DW of seedlings were all TIRC, and four out of five cultivars concerning minimum FRDW were TIRC. Thus the foreign genes (Bt and CpTI) encoding insecticidal protein and their introduction processes surely affected TTLP of cotton. However, the underlying mechanisms controlling TTLP still remained unclear. HC showed greater TTLP as compared to CC; with 28.0%, 19.9%, 26.4%, and 43.2% increase in DW, KAA, KUI, and FRDW, respectively. In addition, four from five cultivars concerning maximum both DW and FRDW were HC. These suggested that TTLP of cotton showed significant heterosis. It was further found that the heterosis of TIRC in TTLP was higher than that of NIRC. For example, DW, KAA, KUI, and FRDW of hybrid TIRC were 37.0%, 24.6%, 44.3%, and 59.4% higher, respectively, than those of conventional TIRC, whereas hybrid NIRC only showed 27.7% and 29.9% higher in DW and FRDW, respectively, than conventional NIRC. However, maturity did not affect TTLP of cotton. Significant genotypic variation in TTLP was also observed within each type of cultivars. TTLP of the best cultivars of conventional TIRC was equal to that of the middle cultivars of conventional NIRC and hybrid TIRC.

Key words: Cotton (Gossypium hirsutum), Cultivar type, Tolerant to potassium deficiency, Variation

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[6] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[9] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[10] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[11] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[12] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[13] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030.
[14] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[15] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!