欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (11): 1877-1884.doi: DOI: 10.3724/SP.J.1006.2008.01877

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

发掘人工合成小麦中千粒重QTL的有利等位基因

廖祥政1,2,**;王瑾2,**;周荣华2;任正隆1;贾继增2,*   

  1. 1四川农业大学农学院,四川雅安 625014;2中国农业科学院作物科学研究所/农业部作物种质资源与生物技术重点开放实验室,北京100081
  • 收稿日期:2008-04-08 修回日期:1900-01-01 出版日期:2008-11-13 网络出版日期:2008-09-05
  • 通讯作者: 贾继增

Mining Favorable Alleles of QTLs Conferring 1000-Grain Weight from Synthetic Wheat

LIAO Xiang-Zheng12**,WANG Jin2**,ZHOU Rong-Hua2,REN Zheng-Long1,JIA Ji-Zeng2*   

  1. 1 College of Agronomy, Sichuan Agricultural University, Ya’an 625014, Sichuan; 2 Key Laboratory of Crop Germplasm & Biotechnology, Ministry of Agriculture/ Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2008-04-08 Revised:1900-01-01 Published:2008-11-13 Published online:2008-09-05
  • Contact: JIA Ji-Zeng

摘要:

以人工合成小麦Am3为供体亲本,普通小麦莱州953为轮回亲本,经5次回交然后自交,培育出含85个株系的F2:3群体。以该群体为材料,用348对多态性SSR标记,进行全基因组扫描,发掘人工合成小麦中千粒重QTL的有利等位基因。利用复合区间作图法检测到3个千粒重QTL,其对表型变异的贡献率为10.9%~33.79%。其中,Am3的等位基因能够增加千粒重2.3~4.8 g。相关分析表明,该导入系群体的千粒重与穗粒数、穗数和株高无显著相关性。千粒重QTL与穗粒数、穗数性状的QTL不在同一位置,这有利于高千粒重基因与其他产量性状基因的聚合。采用混合线性模型作图法检测到1个千粒重QTL(QGw.caas-3D),该QTL与环境互作效应小,而且与复合区间作图法在3个环境中都检测到的QTL相同,表明QGw.caas-3D是一个稳定的主效QTL。

关键词: 小麦, 微卫星标记, 数量性状基因座, 千粒重

Abstract:

In common wheat (Triticum aestivum L.), 1000-grain weight (TGW) is an important component of grain yield. However, TGW is generally negatively correlated with grain number per spike and spike number per plant and positively correlated with plant height. The aim of this study was to mine favorable alleles of QTLs conferring TGW from synthetic wheat using advanced backcross QTL analysis. A BC5F2:3 population consisting of 85 lines were generated from a cross between Laizhou 953, a Chinese commercial wheat variety, and Am3, a synthetic hexaploid wheat, followed by backcrossing with Laizhou 953 as recurrent parent and selfing. Three hundred and fourty-eight polymorphic SSR markers were used for genotyping. Using composite interval mapping (CIM), three major QTLs, QGw.caas-1A, QGw.caas-3D, and QGw.caas-4B, with alleles increasing TGW from Am3, were detected in at least two environments. They could explain phenotypic variations ranging from 10.90 to 33.79%. Among the three QTLs, the alleles originated from Am3 could increase 2.3–4.8 g of TGW without decreasing grain number or spike number, or two of them, even without increasing plant height. Using mixed-model composite interval mapping (MCIM), one QTL (QGw.caas-3D) was detected with no significant interactions across the environment. Moreover, the QTL was at the same interval as the common QTL detected in 3 environments with CIM method. It is suggested that QGw.caas-3D is insensitive to environments, and may be a stable and major QTL for TGW.

Key words: Wheat, Microsatellite marker, Quantitative trait locus (QTL), 1000-grain weight

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!