欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (11): 1885-1893.doi: 10.3724/SP.J.1006.2008.01885

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻抗纹枯病QTL表达的遗传背景及环境效应

谢学文1;许美容1;藏金萍1;孙勇1;朱苓华1;徐建龙1,*;周永力1,*;黎志康1,2   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程, 北京100081;2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
  • 收稿日期:2008-02-21 修回日期:1900-01-01 出版日期:2008-11-13 网络出版日期:2008-09-05
  • 通讯作者: 徐建龙
  • 基金资助:

    国家自然科学基金项目(30671413);国家高技术研究发展计划(863计划)项目(2007AA10Z191);引进国际先进农业科学技术计划(948计划)项目(2006-G51)

Genetic Background and Environmental Effects on Expression of QTL for Sheath Blight Resistance in Reciprocal Introgression Lines of Rice

XIE Xue-Wen1,XU Mei-Rong1,ZANG Jin-Ping1,SUN Yong1,ZHU Ling-Hua1,XU Jian-Long1*,ZHOU Yong-Li1*,LI Zhi-Kang12   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China; 2 International Rice Research Insititute, DAPO Box 7777, Metro Manila, Philippines
  • Received:2008-02-21 Revised:1900-01-01 Published:2008-11-13 Published online:2008-09-05
  • Contact: XU Jian-Long

摘要:

利用水稻纹枯病菌强致病菌系RH-9人工接种Lemont导入到特青背景的213个近等基因导入系(TQ-ILs)群体和特青导入到Lemont背景的195个近等基因导入系(LT-ILs)群体,定位和分析了水稻抗纹枯病数量性状座位(quantitative trait loci, QTL)及其表达的环境与遗传背景效应。亲本Lemont对RH-9表现为高度感病,特青表现为中等抗病。人工接种后TQ-ILs群体的相对病斑高度(病斑高度与株高比)呈连续正态分布,LT-IL群体则明显偏向感病亲本Lemont。在不同年份和遗传背景下检测到影响纹枯病相对病斑高度的主效QTL 10个和互作QTL 13个,其中2006年在TQ-IL群体定位到的6个主效QTL在2007年均得到验证,表明这些QTL具有较好年度间的重复性。QSh4是唯一在双向导入系背景下表达的QTL,该位点特青等位基因降低相对病斑高度,提高抗性水平。在TQ-ILs群体中定位到位于第10染色体RM216~RM311区间的QSb10a与在LT-IL群体中定位到的位于相邻区间RM222~RM216的QSb10b的基因作用方向不同,推断这两个QTL存在紧密连锁关系。绝大多数在TQ-IL群体中表达的主效及互作QTL在LT-ILs群体中不表达,表明水稻抗纹枯病QTL具有明显的遗传背景效应。通过比较作图,本研究定位到的其中8个QTL在以往不同群体中同样被检测到,这些主效QTL对通过分子标记辅助选择(marker-assisted selection, MAS)培育水稻抗纹枯病育种可能具有应用价值。研究指出,标记辅助选择在不同遗传背景中能稳定表达的QTL或通过聚合不同抗病QTL是进一步提高水稻纹枯病抗性水平的一个有效途径。

关键词: 水稻, 纹枯病, 数量性状座位(QTL), 遗传背景效应, 回交导入系

Abstract:

Genetic background and environmental effects of QTL for sheath blight resistance to the isolate RH-9 (Rhizoctonia solani kuhn) were revealed using the reciprocal introgression line populations derived from the cross of Lemont/Teqing. Lemont is highly susceptible while Teqing resistant to RH-9. The relative lesion height (a ratio of lesion height to plant height, RLH) of TQ-ILs was normally distributed whereas that of LT-ILs was apparently inclined to the susceptible parent, Lemont. Total 10 main-effect QTLs and 13 epistatic QTLs affecting sheath blight resistance were mapped under different years and genetic backgrounds. Among them, six main-effect QTLs detected in 2006 were all verified in 2007, suggesting these QTLs had reliable performance across years. QSh4 was the only one QTL expressed under the reciprocal backgrounds and Teqing allele at this locus decreased RLH, suggesting the improvement of resistance level. QSh10a detected in the TQ-ILs and located in the region of RM216–RM311 on the chromosome 10 and QSh10b detected in the LT-ILs in the neighboring region of RM222–RM216 were not the same gene but existed tight linkage as regards to different gene directions in different backgrounds. Most QTLs identified in TQ-ILs were not expressed in LT-ILs, indicating there was evident genetic background effect. By comparative mapping, 8 QTLs detected in this study were located in the same or near regions that associated with sheath blight resistance identified in the previous studies, suggesting these main-effect QTLs could be applied in rice breeding for sheath blight resistance by marker-assisted selection. As indicated in this study, it is an effective way to further improve sheath blight resistance by selecting the QTL stably expressed in different backgrounds or pyramiding different main-effect QTLs.

Key words: Rice, Sheath blight, Quantitative trait locus (QTL), Genetic background effect, Backcrossing introgression line

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!