作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2126-2133.doi: 10.3724/SP.J.1006.2008.02126
李永春1;孟凡荣2;王潇1;陈雷1;任江萍1;牛洪斌1;李磊1;尹钧1,*
LI Yong-Chun1,MENG Fan-Rong2,WANG Xiao1,CHEN Lei1,REN Jiang-Ping1,NIU Hong-Bin1,LI Lei1,YIN Jun1*
摘要:
为探讨小麦水分胁迫反应的分子调控机制,以抗旱小麦品种“洛旱2号”根系为材料,采用Affymetrix小麦基因芯片比较了20% PEG6000溶液处理后根系及对照的基因表达谱。结果表明,洛旱2号根系中受水分胁迫诱导而上调和下调表达的基因分别有3 743个(4 074个探针组)和4 573个(5 043个探针组),下调表达的基因远远多于上调表达的基因,其中上调2倍以上的1 593个(1 716个探针组),下调2倍以上的2 238个(2 451个探针组)。通过Affymetrix 的NetAffx Analysis Center查询和NCBI的BLASTX分析,差异表达2倍以上的基因中有619个已注释了功能,利用MIPS数据库将注释基因分为10类,包括生物代谢、逆境胁迫反应、细胞组分生成、蛋白合成、细胞信号交流、细胞运输、转录相关、细胞分裂和蛋白质加工等。差异表达16倍以上的基因中有32个已注释了功能,其中与逆境胁迫反应相关的基因16个,与生物代谢相关的基因5个。利用实时定量RT-PCR对8个代表性候选基因在水分胁迫条件下的差异表达特性分析表明,其结果和芯片杂交分析的结果基本一致。
[1]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks in-volved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221-227 [2]Micheletto S, Rodriguez-Uribe L, Hernandez R, Richins R D, Curry J, O'Connell M A. Comparative transcript profiling in roots of Phaseolus acutifolius and P. vulgaris under water deficit stress. Plant Sci, 2007, 173: 510-520 [3]Wang Z(王转), Zang Q-W(臧庆伟), Guo Z-A(郭志爱), Jing R-L(景蕊莲). A preliminary study on gene expression profile induced by water stress in wheat (Triticum aestivum L.) seed-ling. Acta Genet Sin (农业生物技术学报), 2004, 31(8): 842-849 (in Chinese with English abstract) [4]Pang X-B(庞晓斌), Mao X-G(毛新国), Jing R-L(景蕊莲), Shi J-F(施俊凤), Gao T(高婷), Chang X-P(昌小平), Li Y-F(李彦舫). Analiysis of gene expression profile responded to water stress in wheat (Triticum aestivum L.) seedling. Acta Agron Sin (作物学报), 2007, 33(2): 333-336 (in Chinese with English abstract) [5]Xu Z-D(许州达), Jing R-L(景蕊莲), Gan Q(甘强), Zeng H-P(曾海攀), Sun X-H(孙学辉), Leung H, Lu T-G(路铁刚), Liu G-Z(刘国振). Drought-tolerant gene screening in wheat by using rice microarray. J Agric Biotechnol (农业生物技术学报), 2007, 15(5): 821-827 (in Chinese with English abstract) [6]Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterk?tter M, Mewes H W. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucl Acids Res, 2004, 32: 5539-5545 [7]Li Y C, Meng F R, Yin J, Liu H Y, Si Z F, Ni Z F, Sun Q X, Ren J P, Niu H B. Isolation and comparative expression analysis of six MBD genes in wheat. Biochim Biophys Acta, 2008, 1779: 90-98 [8]Bray E A. Molecular responses to water deficit. Plant Physiol, 1993, 103: 1035-1040 [9]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273 [10]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water stress response. Plant Physiol, 1997, 115: 327-334 [11]Xiong L M, Schumaker K S, Zhu J K. Cell signal during cold, drought, and salt stress. Plant Cell, 2002, (suppl): S165-S183 [12]Wang Y-F(汪耀富), Yang T-X(杨天旭), Liu G-S(刘国顺), Zhao C-H(赵春华), Wang P(王佩), Chen X-J(陈新建). Dif-ferentially expressed genes in tobacco leaves under osmotic stress. Acta Agron Sin (作物学报), 2007, 33 (6): 914-920 (in Chinese with English abstract) [13]Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9: 118 [14]Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249-257 [15]Wang J-Y(王静英), Li Y-C(李永春), Wang X(王潇), Meng F-R(孟凡荣), Ren J-P(任江萍), Niu H-B(牛洪斌), Yin J(尹钧). Cloning and characterizing of TaLEA4 gene in wheat. J Triticease Crops (麦类作物学报), 2008, 28(2): 183-186 (in Chinese with English abstract) [16]Ramachandra R A, Chaitanya K V, Vivekanandan M. Drought- induced responses of photosynthesis and antioxidant metabo-lism in higher plants. Plant Physiol, 2004, 161: 1189-1202 [17]Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able J A. Microarray expres-sion analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics, 2006, 7: 267 |
[1] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[2] | 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655. |
[3] | 赵仁欣,李森业,郭瑞星,曾新华,文静,马朝芝,沈金雄,涂金星,傅廷栋,易斌. 利用SNP芯片构建我国冬油菜参试品种DNA指纹图谱[J]. 作物学报, 2018, 44(7): 956-965. |
[4] | DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346. |
[5] | 武炳瑾,简俊涛,张德强,马文洁,冯洁,崔紫霞,张传量,孙道杰*. 利用90k芯片技术进行小麦穗部性状QTL定位[J]. 作物学报, 2017, 43(07): 1087-1095. |
[6] | 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831. |
[7] | 叶德练,齐瑞娟,管大海,李建民,张明才,李召虎. 免耕冬小麦田土壤微生物特征和土壤酶活性对水分调控的响应[J]. 作物学报, 2015, 41(08): 1212-1219. |
[8] | 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135. |
[9] | 金秀锋,王宪国,任万杰,张晓科,谢惠民,范锋贵. 一个水分胁迫应答蛋白与小麦抗旱性的关系及其基因的定位[J]. 作物学报, 2014, 40(02): 198-204. |
[10] | 王卫锋,杨晓青,张岁岐,山仑. 剪根与水分胁迫对小麦单根和细胞导水率及TaPIP基因表达的影响[J]. 作物学报, 2013, 39(08): 1462-1468. |
[11] | 李余良,刘建华,郑锦荣,胡建广. 高温胁迫下甜玉米雌穗发育基因差异表达谱分析[J]. 作物学报, 2013, 39(02): 269-279. |
[12] | 张智猛,戴良香,宋文武,丁红,慈敦伟,康涛,宁堂原,万书波. 干旱处理迫对花生品种叶片保护酶活性和渗透物质含量的影响[J]. 作物学报, 2013, 39(01): 133-141. |
[13] | 闫贵欣,陈碧云,许鲲,高桂珍,吕培军,伍晓明,李锋,李俊. 不同施氮水平下甘蓝型油菜发育种子中基因表达谱差异分析[J]. 作物学报, 2012, 38(11): 2052-2060. |
[14] | 冯晓敏,张永清. 水分胁迫对糜子植株苗期生长和光合特性的影响[J]. 作物学报, 2012, 38(08): 1513-1521. |
[15] | 张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价[J]. 作物学报, 2012, 38(03): 495-504. |
|