欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1893-1899.doi: 10.3724/SP.J.1006.2009.01893

• 耕作栽培·生理生化 • 上一篇    下一篇

氮素和6-BA对水稻分蘖芽发育的影响及其生理机制

刘杨,王强盛,丁艳锋,刘正辉,李刚华,王绍华*   

  1. 南京农业大学农学院/农业部南方作物生理生态重点开放实验室,江苏南京210095
  • 收稿日期:2009-03-23 修回日期:2009-06-25 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 王绍华,E-mail:wangsh@njau.edu.cn; Tel:025-84396475
  • 基金资助:

    本研究由国际科技支撑计划项目(2006BAD02A03)和国家自然科学基金项目(30871482)资助。

Effect of Nitrogen and 6-BA on Development of Tillering Bud and Its Physiological Mechanism

LIU Yang,WANG Qiang-Sheng,DING Yan-Feng,LIU Zheng-Hui,LI Gang-Hua,WANG Shao-Hua*   

  1. Agronomy College,Nanjing Agricultural University/Key Laboratory of Crop Physiology & Ecology in Southern China,Ministry of Agriculture,Nanjing 210095,China
  • Received:2009-03-23 Revised:2009-06-25 Published:2009-10-12 Published online:2009-08-07
  • Contact: WANG Shao-Hua,E-mail:wangsh@njau.edu.cn; Tel:025-84396475

摘要:

以扬稻6号、南粳44为材料,研究了氮素和6-BA对水稻分蘖芽萌发的影响及分蘖芽萌发过程中碳氮代谢和细胞分裂素含量的变化。结果表明,氮素和6-BA都能促进分蘖芽的萌发,但二者维持分蘖芽进一步生长的能力存在明显差异,氮素能够促进分蘖芽持续生长,而6-BA是无法维持分蘖芽的持续生长。氮素和6-BA均提高了分蘖节中细胞分裂素(Z+ZRiP+iPR)含量及叶、根中硝酸还原酶(NR)活性,但6-BA处理无法提高水稻植株体内可溶性蛋白含量及氮素和非结构性碳水化合物的积累,使水稻植株体内营养物质积累不足。这说明,氮素和细胞分裂素通过内源激素平衡和碳氮代谢两条生理途径调控分蘖发生。

关键词: 水稻, 分蘖芽, 发育, 氮素, 6-BA

Abstract:

Tiller number is a major factor affecting rice yield, nitrogen and cytokinin have substantial regulative effect on tillering of rice. However, little is known on the mechanism of nitrogen and cytokinin regulating tillering bud growth and on the relationship of them during this process. In this study, two rice cultivars (Yangdao 6 and Nanjing 44) were used to investigate the effect of nitrogen and cytokinin on the regulation in tillering bud growth and the changes of nitrogen, carbon and cytokinins in plant during this process. The results showed that both nitrogen and cytokinin promoted the germination of tillering bud, but there was a significant difference in the effect of them on the subsequent outgrowth, nitrogen promoted both germination and outgrowth of tillering bud, however, cytokinin only promoted tillering bud’s germination. Both nitrogen and 6-BA significantly increased cytokinin (Z+ZR and iP+iPR) content in tillering node and promoted activity of nitrate reductase (NRA) in leaf and root, but 6-BA couldn't significantly increase the content of soluble protein, nitrogen and non structural carbohydrate (NSC) in plant. In conclusion, nitrogen and 6-BA may regulate tiller production by two approaches, one is the promotion of endogenous hormones balance and the other is the controlling of carbon and nitrogen metabolism.

Key words: Rice, Tillering bud, Development, Nitrogen, 6-BA

[1] Li X-Y(李学勇), Qian Q(钱前), Li J-Y(李家洋). Progress in elucidating the moleculatmechanism of rice tillering. Bull Chin Acad Sci (中国科学院院刊), 2003, (4): 274-276 (in Chinese with English abstract)

[2] Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422: 618-621

[3] Ling Q-H(凌启鸿). Crop Population Quality (作物群体质量). Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 96-101 (in Chinese)

[4] Ding Y-F(丁艳锋). Regulations of Rice Population Quality by Nitrogen Nutrition. Ph.D. Dissertation of Nanjing Agricultural University, 1997. pp 20-24 (in Chinese with English abstract)

[5] Jiang P-Y(蒋彭炎), Hong X-F (洪晓富), Feng L-D(冯来定), Xu Z-F(徐志富), Fang Z-F(方樟法). The effect of nitrogen concentration on nitrogen absorption and tiller development in rice under water culture. Acta Agron Sin (作物学报), 1997, 23(2): 191-199 (in Chinese with English abstract)

[6] Bran G F. Local and long-rance signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol, 2002, 53: 203-224

[7] Beck E H. Regulation of shoot/root ratio by cytokinins from roots in Urtica diocia: opinion. Plant Siol, 1996, 185: 3-12

[8] Walch L P, Neumann G, Bangerth F, Engels C. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot, 2000, 51: 227-237

[9] Liang Z-X(梁振兴), Ma X-L(马兴林). Studies on the effects of endogenous hormones on tiller development process of winter wheat. Acta Agron Sin (作物学报), 1998, 24(6): 788-792 (in Chinese with English abstract)

[10] Ma X-L(马兴林), Liang Z-X(梁振兴). Studies on the effects of endogeneous hormones in winter wheat tillers during the course of senescence. Acta Agron Sin (作物学报), 1997, 23(2): 200-207 (in Chinese with English abstract)

[11] Ekamber K P K M. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars. Plant Growth Regul, 2007, 53: 215-223

[12] Marcia A H, Peter B K. Hormonal regulation of lateral bud (tiller) release in oats. Plant Physiol, 1980, 66: 1123-1127

[13] Hitoshi S, Kentaro T, Naoya H. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci, 2008, 11: 440-448

[14] Sachs T, Thimann K V. The role of auxins and CKs in the release of buds from dominance. Am J Bot, 1967, 54: 136-144

[15] Anger R H M, Prasad P C, Laude H M. Effects of kinetin on tiller bud elongation in wheat (Triticum aestivum L.). Ann Bot, 1973, 37: 565-571

[16] Yuan J-C(袁进成), Liu Y-H(刘颖慧).Advancing in the control of lateral buds and branching initiation in high plants. J Hebei North Univ (河北北方学院学报), 2007, 23(5): 18-23 (in Chinese with English abstract)

[17] Yoshida S (吉田昌一). Laboratory Manual for Physiological Studies of Rice (水稻生理学实验手册). Beijing: Science Press, 1975. pp 57-64 (in Chinese)

[18] Li H-S(李合生). Principles and Techniques for Plant Physiology and Biochemistry Experiment (植物生理生化实验原理与技术). Beijing: Higher Education Press, 2000. pp 184-185 (in Chinese)

[19] Bao S-D(鲍士旦). Soil and Agricultural Chemistry Analysis (土壤农化分析), 3rd edn. Beijing: China Agriculture Press, 2000. pp 264-268 (in Chinese)

[20] Miao X-J(缪小建), Wang S-H(王绍华), Li G-H(李刚华), Ding Y-F(丁艳锋). Effects of spikelet-removing on non-structural carbohydrate translocation in filling stage and grain quality of hybrid rice. Hybrid Rice (杂交水稻), 2008, 23(5): 55-59 (in Chinese with English abstract)

[21] Wu S-R(吴颂如), Chen W-F(陈婉芬), Zhou X(周燮). Enzyme linked immunosorbent assay for endogenous plant hormones. Plant Physiol Commun (植物生理学通讯), 1988, (5): 53-57 (in Chinese with English abstract)

[22] Zhao Q-Z(赵全志), Chen J-X(陈静芯), Liu H(刘辉), Qiao J-F(乔江方), Gao T-M(高桐梅), Yang H-X(杨海霞), Wang J-H(王继红). Relationship between activities of nitrogen assimilation enzymes and leaf color of rice. Sci Agric Sin (中国农业科学), 2008, 41(9): 2607-2616 (in Chinese with English abstract)

[23] Wang G Y, Volker R, Li C J, Fritz B. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants. J Plant Physiol, 2006, 163: 591-600

[24] Emery R J N, Longnecker N E, Atkins C A, Branch development in Lupinus angustifolius L.: I. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds. J Exp Bot, 2000, 49: 555-562

[25] Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 2003, 15: 2532-2550

[26] Berleth T, Sachs T. Plant morphogenesis: Long-distance coordination and local patterning. Curr Opin Plant Biol, 2001, 4: 57-62

[27] Tian Q, Reed J W. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Develop, 1999, 126: 711-721

[28] Samuelson M E, Larsson C M. Nitrate regulation of zeatin riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci, 1993, 93: 77-84

[29] Takei K, Sakakibara H, Taniguchi M, Sugiyama T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol, 2001, 42: 85-92
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!