欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 475-482.doi: 10.3724/SP.J.1006.2009.00475

• 耕作栽培·生理生化 • 上一篇    下一篇

辽棉18与新棉99B苗期耐低钾能力的差异及其机制

华含白;李召虎;田晓莉*   

  1. 中国农业大学作物化学控制研究中心/农业部作物栽培与耕作学重点开放实验室/植物生理学与生物化学国家重点实验室,北京100193
  • 收稿日期:2008-07-08 修回日期:2008-08-31 出版日期:2009-03-12 网络出版日期:2008-01-15
  • 通讯作者: 田晓莉
  • 基金资助:

    本研究由国家自然科学基金项目(30100111),高等学校科技创新工程重大项目培育资金项目(707008)资助

Difference and Its Mechanism in Tolerance to Low-Potassium between Liaomian 18 and NuCOTN99B at Seedling Stage

HUA Han-Bai;LI Zhao-Hu;TIAN Xiao-Li*   

  1. Center of Crop Chemical Control/Key Laboratory of Crop Cultivation and Farming System/State Key Laboratory of  National Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
  • Received:2008-07-08 Revised:2008-08-31 Published:2009-03-12 Published online:2008-01-15
  • Contact: TIAN Xiao-Li

摘要:

在室内液培(1/4改良Hoagland营养液)条件下比较了非抗虫棉辽棉18和转Bt基因抗虫棉新棉99B苗期耐低钾能力的差异,并研究了钾的吸收、运转、利用及其机制。两品种在充足供钾(2.5 mmol L-1)处理下的幼苗干物重相当,但在低钾胁迫下(0.03 mmol L-1)辽棉18的干物重为新棉99B2.7倍,表现出较强的耐低钾能力。辽棉18单位根重(或单位根长、单位根表面积)的吸钾量相当或低于新棉99B,叶片钾积累量占整株的比例也显著低于后者,然而其根系发达(根长、根表面积和根体积分别为新棉99B3.43.84.2),钾利用指数也较新棉99B1倍以上。表明辽棉18较强的耐低钾能力与根系生理吸钾能力和钾在植株体内的运转无关,而主要由发达的根系和较高的体内钾利用能力决定。由于低钾条件下辽棉18和新棉99B叶片的渗透势及相对含水量均无显著差异,证明二者体内钾利用能力的不同不在于钾的生物物理功能(调节膨压和渗透势)的高低,而可能主要与钾的生物化学功能(促进光合作用、韧皮部的装载和蛋白质的合成等)有关。

关键词: 棉花, 耐低钾, 基因型差异, 钾吸收, 钾运转, 钾利用

Abstract:

Exploiting the genetic diversity of cotton in tolerance to low-potassium (K) is desired for sustainable production. The objective of the present study was to compare the variation in tolerance to low-K between Liaomian 18, a non- insect-resistant cotton cultivar, and NuCOTN99B, a transgenic insect-resistant cotton cultivar from American, hydroponically grown in growth chamber and to elucidate the underlying mechanisms controlling that. When K application was sufficient (2.5 mmol L-1), there was no significant difference in dry matter yield between the two cultivars at seedling-stage. However, Liaomian 18 produced 170% more dry matter than NuCOTN99B under low K (0.03 mmol L-1) growing condition, suggesting that Liaomian 18 is K-efficiency with higher tolerance to low-K and NuCOTN99B is K-inefficiency. It was observed that K uptake amount per unit root dry weight, per unit root length and per unit root surface area in Liaomian 18 was similar to or lower than that in NuCOTN99B, implying that the K uptake ability concerning physiological aspect of Liaomian 18 was not superior. Furthermore, the ratio of K accumulation in leaf to that in whole plant was 57.7% for Liaomian 18, and 67.6% for NuCOTN99B, which suggested that the K translocation efficiency in Liaomian18 was ineffective, when compared to NuCOTN99B. Nevertheless, Liaomian 18 had a large root system; its root length, root surface area and root volume were equal to 3.4-, 3.8-, and 4.2-fold of those of NuCOTN99B, respectively. Moreover, the index of K utilization (dry matter produced per unit of K concentration) in Liaomian 18 was 147% higher than that in NuCOTN99B. Therefore, the high tolerance to low-K of Liaomian 18 possibly depended on its large root system and efficient internal K utilization instead of its K uptake ability per unit of root dry weight/length/surface area and K translocation efficiency in plant. Because there were no significant differences in osmotic potential as well as relative water content in leaf between Liaomian 18 and NuCOTN99B, it was concluded that the difference in internal K utilization efficiency between the two cultivars was not related to the biophysical function of potassium (regulation of turgor pressure and osmotic potential), but likely related to the biochemical function of potassium (promotion of photosynthesis, phloem loading and protein synthesis etc.).

Key words: Cotton(Gossypium hirsutum), Tolerant to low-potassium, Genotypic difference, K uptake, K translocation, K utilization

[1]Song M-Z(宋美珍), Mao S-C(毛树春), Xing J-S(邢金松), Yang H-Y(杨惠元). Effects of potassium on photosynthetic matter accumulation and yield of CRI12 and CRI17. Acta Gossypii Sin (棉花学报), 1994, 6(suppl): 52–57(in Chinese)
[2]Fang Y(房英). Effect of potassium on cotton yields and fiber quality. Plant Nutr Fert Sci (植物营养与肥料学报), 1998, 4(2): 196–197(in Chinese)
[3]Liang J-X(梁金香), Wang Y-D(王玉朵), Han M(韩梅), Zhang L-C(张立臣). Study on the effect and technique for potassium application in the cotton. Soils Fert (土壤肥料), 2003, (3): 17–19 (in Chinese with English abstract)
[4]Pettigrew W T. Relationships between insufficient potassium and crop maturity in cotton. Agron J, 2003, 95: 1323–1329
[5]Pervez H, Ashraf M, Makhdum M I. Influence of potassium on gas exchange characteristics and water relations in cotton (Gossypium hirsutum L.). Photosynthetica, 2004, 42: 251–255
[6]Reddy K R, Zhao D. Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crop Res, 2005, 94: 201–213
[7]Reddy K R, Hodges H F, Varco J. Potassium nutrition of cotton. The Office of Agricultural Communications, the MSU Division of Agriculture, Forestry, and Veterinary Medicine. March, Bulletin No.1094, 2000. p 10
[8]Pettersson S, Jensen P. Variation among species and varieties in uptake and utilization of potassium. Plant Soil, 1983, 72: 231–237
[9]Brouder S M, Cassman K G. Root development of two cotton cultivars in relation to potassium uptake and plant growth in avermiculite soil. Field Crops Res, 1990, 23: 187–203
[10]Woodend J, Glass A D M. Genotype-environment interaction and correlation between vegetative and grain production measures of potassium use-efficiency in wheat (T. aestvum L.) grown under potassium stress. Plant Soil, 1993, 151: 39?441
[11]Dessougi H E, Claassen N, Steingrobe B. Potassium efficiency mechanisms of wheat, barley, and sugar beet grown on a K fixing soil under controlled conditions. J Plant Nutr Soil Sci, 2002, 165: 732–737
[12]George M S, Lu G Q, Zhou W J. Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatas L.). Field Crops Res, 2002, 77: 7–15
[13]Liu G-D(刘国栋), Liu G-L(刘更另). Screening hybrid combinations of indica rice for K-efficient genotypes. Sci Agric Sin (中国农业科学), 2002, 35(9): 1044–1048 (in Chinese with English abstract)
[14]Lü F-T(吕福堂), Zhang X-S(张秀省), Zhang B-H(张保华), Liu C-S(刘春生). Study on the ability of potassium absorption and tolerant to low potassium for different genotype maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(4): 556–559 (in Chinese with English abstract)
[15]Su X-K(苏贤坤), Zhang X-H(张晓海), Wang Z-Q(汪自强). The genotypic difference of potassium nutrition of flue-cured tobacco. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(4): 536–540 (in Chinese with English abstract)
[16]Liu G-D(刘国栋), Liu G-L(刘更另). Screening indica rice for K-efficient genotypes. Acta Agron Sin (作物学报), 2002, 28(2): 161–166(in Chinese with English abstract)
[17]Zou C-Q(邹春琴), Li Z-S(李振声), Li J-Y(李继云). Characteristics of potassium nutrition of six wheat cultvars at different growth stages. Sci Agric Sin (中国农业科学), 2002, 35(3): 340–344 (in Chinese with English abstract)
[18]Liu J-X(刘建祥), Yang X-E(杨肖娥), Wu L-H(吴良欢), Yang Y-A(杨玉爱). Potassium accumulation and translocation in shoots of different rice genotypes. Chin J Rice Sci (中国水稻科学), 2002, 16(2): 189–192 (in English with English abstract)
[19]Yang X E, Liu J X, Wang W M, Li H, Luo A C, Ye Z Q, Yang Y. Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.). Nutr Cycl Agroecosys, 2003, 67: 273–282
[20]Jiang C-C(姜存仓), Yuan L-S(袁利升), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森). K-efficiency in different cotton genotypes at seeding stage. J Huazhong Agric Univ (华中农业大学学报), 2003, 22(6): 564–468 (in Chinese with English abstract)
[21]Tian X-L(田晓莉), Wang G-W(王刚卫), Zhu R(朱睿), Yang P-Z(杨培珠), Duan L-S(段留生), Li Z-H(李召虎). Conditions and indicators for screening cotton (Gossypium hirsutum) genotypes tolerant to low-potassium. Acta Agron Sin (作物学报), 2008, 34(8): 1435–1443 (in Chinese with English abstract)
[22]Tian X-L(田晓莉), Wang G-W(王刚卫), Yang F-Q(杨富强), Yang P-Z(杨培珠), Duan L-S(段留生), Li Z-H(李召虎). Differences in tolerance to low-potassium supply among different types of cultivars in cotton (Gossypium hirsutum L.). Acta Agron Sin (作物学报), 2008, 34(10): 1770–1780 (in Chinese with English abstract)
[23]Zhi M–X(职明星), Li X-J(李秀菊). Improvement on the method for measuring proline content. Plant Physiol Commun (植物生理学通讯), 2005, 41(3): 355–357 (in Chinese)
[24]Gong F-S(龚富生), Zhang J-B(张嘉宝). Experiments on Plant Physiology (植物生理学实验). Beijing: Weather Publishing House, 1995. pp 12–l5 (in Chinese)
[25]Barker D J, Hume D E, Quigley P E. Negligible physiological responses to water deficit in endophyte-infected and uninfected perennial ryegrass. Agric Ecosyst Environ, 1993, 44: 123–141
[26]Gerloff G C, Gabelman W H. Genetic basis of inorganic plant nutrition. In: L?uchli A, Bieleski R L, eds. Encyclopedia of Plant Physiology. New series vol. 15B. New York: Spring-Verlag, 1983. pp 453–480
[27]Wang Z(王忠). Plant Physiology (植物生理学). Beijing: China Agriculture Press, 2000. pp 80–226(in Chinese)
[28]Siddiqi M Y, Glass A D M. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plant. J Plant Nutr, 1981, 4: 289–302
[29]Aspinall D, Paleg L G. Proline accumulation: Physiological aspects. In: Paleg L G, Aspinall D, eds. The Physiology and Biochemistry of Drought Resistance in Plants. New York: Academic Press, 1981. pp 205–241
[30]Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants. Plant J, 1993, 4: 215–223
[31]Hare P D, Cress W A. Metabolic implications of stress induced proline accumulation in plats. Plant Growth Regul, 1997, 21: 79–102
[32]Gerloff G C. Plant efficiencies in the use of N, P and K. In: Wright M J ed. Plant Adaptation to Mineral Stress in Problem Soils. New York: Cornell University Press, 1977. pp 161–174
[33]Jiang C-C(姜存仓), Chen F(陈防), Gao X-Z(高祥照), Lu J-W(鲁剑巍), Wan K-Y(万开元), Nian F-Z(年夫照), Wang Y-H(王运华). Different responses to potassium stress between potassium high efficiency and potassium low efficiency cotton genotypes. Sci Agric Sin (中国农业科学), 2008, 41(2): 488–493 (in Chinese with English abstract)
[34]Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press, 1995
[35]Xie J-C(谢建昌), Zhou J-M(周建民), H?rdter R. Potassium in Chinese Agriculture (钾与中国农业). Nanjing: Hehai University Press, 2000. pp 28–35 (in Chinese)
[36]Raviv M, Blom T J. The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Sci Hort, 2001, 88: 257–276
[37]Samaras Y, Bressan R A, Csonka L N, García-Ríos M G, Paino D'Urzo M, Rhodes D. Proline accumulation during drought and salinity. In: Smirnoff N ed. Environment and Plant Metabolism. Oxford: Bios Scientific Publishers, 1995. pp 161–187
[38]Heuer B. Osmoregulatory role of proline in water- and salt-stressed plants. In: Pessarakli M ed. Handbook of Plant and Crop Stress. New York: Marcel Dekker, 1994. pp 363–381
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!