欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 695-703.doi: 10.3724/SP.J.1006.2009.00695

• 耕作栽培·生理生化 • 上一篇    下一篇

铝胁迫下大豆根尖细胞铝的微区分布与耐铝性分析

俞慧娜,刘鹏*,徐根娣,蔡妙珍   

  1. 浙江师范大学植物学实验室,浙江金华321004
  • 收稿日期:2008-06-07 修回日期:2008-12-15 出版日期:2009-04-12 网络出版日期:2009-02-16
  • 通讯作者: 刘鹏 E-mail:sky79@zjnu.cn
  • 基金资助:

    本研究由国家“十一五”科技攻关项目(2004BA525B06);国家自然科学基金项目(30540056);浙江省自然科学基金(303461和304185)项目资助。

Distribution of Al3+ in Subcellular Structure of Root Tips Cells and Aluminum Tolerance in soybean

YU Hui-Na,LIU Peng*,XU Gen-Di,CAI Miao-Zhen   

  1. Key laboratory of Botany,Zhejiang Normal University,Jinhua321004,China
  • Received:2008-06-07 Revised:2008-12-15 Published:2009-04-12 Published online:2009-02-16
  • Contact: LIU Peng E-mail:sky79@zjnu.cn

摘要:

以浙春3号为实验材料, 利用透射电镜(TEM: Transmission Electron Microscope)-X-射线能谱(EDS: Energy Dispersive X-ray), 调查铝胁迫下大豆根尖铝的微区分布及耐铝性。结果表明,Al3+胁迫导致根尖细胞细胞壁不规则加厚, 线粒体数量增多, 核膜膨胀, 液泡中存在较多的电子致密沉淀物。90 mg L-1 Al3+处理的根尖细胞内含物完全降解消失, 仅剩细胞壁。10 mg L-1 Al3+处理的线粒体、细胞壁和液泡电子致密沉淀物中均检测到Al;随着Al3+处理浓度的增大, 各细胞器中Al的质量和原子数百分比逐渐增大。线粒体在60 90 mg L-1Al3+处理, 液泡电子致密沉淀物在90 mg L-1Al3+处理下,均未被检测出Al。在60 mg L-1Al3+处理下唯一一次在细胞核中检测到AlAl3+抑制了根系生长, 根系细胞中细胞壁的Al3+含量受影响最明显。P/Al在细胞壁和线粒体中的相对原子数随Al3+浓度的增大而下降。研究结果表明X–射线能谱对铝在亚显微结构上的定位是一种快速、有效的方法。铝最先积累在细胞壁上, Al3+处理浓度增大逐渐积累于部分细胞器和细胞核中, 且含量在细胞中的分布亦由外向里呈递减趁势。

关键词: 铝胁迫, 大豆, 根类细胞, 透射电镜-X-射线能谱分析, 根系生长

Abstract:

Aluminum(Al) toxicity is a major limiting factor for yield and quality in crop production in acid soil. Micromolar concentrations of Al3+ may inhibit root elongation and consequently influence water and nutrient uptake, resulting in poor plant growth. The microanalysis of the elements was conducted on Zhechun 3 by using Transmission Electron Microscope (TEM) and Energy Dispersive X-ray (EDS) to examine the distribution of Al3+ in root tips and Al resistance of soybean. We found that Al3+ stresses resulted in irregularly thickened cell wall, increased number of mitochondria, expanded nuclear membrane, and densified precipitates of vacuole. Under the highest Al3+ concentration, the mitochondria and other organelles disappeared but cell wall. We detected Al in cell wall, mitochondria and electron-dense precipitates of vacuole of root tip cell under the 10 mg L-1Al3+ stresses by EDS. With the increase of external Al3+ concentration treated, the weight and atomic percentage of Al in the organelles increased. The Al3+ was found in nuclei when the external Al3+ was over 60 mg L-1. And there was no Al3+ in mitochondrion under 60 mg L-1 and 90 mg L-1Al3+ treatments and electron-dense precipitates of vacuole under the 90 mg L-1 Al3+ stresses. The 14 days Al3+ stresses significantly inhibited the growth of root system. The content of Al3+ in cell wall was most significantly impacted by the external Al3+ concentration. The atomic number of P / Al in cell wall and mitochondria decreased with increased Al3+ content. EDS can be used to determine the subcellular location of Al3+. As the treatment concentrations of Al3+ increased, Al3+ primarily accumulated in the cell wall, gradually gathered in part of the organelles and nuclei. The Al3+ concentrations also decreased from out layer to insider in the cell.

Key words: Al3+ stresses, Soybean, Root tip cell, Transmission Electron Microscope-Energy Dispersive X-ray Analysis, Root growth

[1] Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiol, 1995, 107: 315–321
[2] Juan B, Charlotte P. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: A review. Environ Exp Bot, 2002, 48: 75–92
[3] Yan H(阎华), Shen X-R(沈秀荣). The mechanism of aluminum toxicity and anti aluminum in plant. J Anhui Agric Sci (安徽农业科学), 2006, 34(20): 5201–5202, 5204(in Chinese with English abstract)
[4] Ladislar T, Jana H, Igor M, Marta S, Beata S. Aluminum – induced drought and oxidative stress in barley roots. J Plant Physiol, 2006, 163: 781–784
[5] Li H-S(李海生), Zhang Z-Q(张志权). The absorption and accumulation of aluminum and mineral nutrient in tea (Camellia sinensis) under different Al levels. Ecol Environ (生态环境), 2007, 16(1): 186–190(in Chinese with English abstract)
[6] Xiao X-X(肖祥希). Characteristics of Aluminum absorption by Longan (Dimocarpus longan) seedlings. Sci Silv Sin (林业科学), 2005, 41(3): 43–47 (in Chinese with English abstract)
[7] Lin Y-M(林玉满). Qualitative and quantitative determination of trace elements in fruits of dictyophora indusiata with SEM an EDAX. Anal Instrum (分析仪器), 1996, (2): 52–54 (in Chinese with English abstract)
[8] He L-F(何龙飞), Liu Y-L(刘友良), Shen Z-G(沈振国), Wang A-Q(王爱勤), Li Y-R(李扬瑞). Effect of aluminum on the absorption and distribution of nutrient element of wheat seedling. J Chin Electron Microsc Soc (电子显微学报), 2000, 19(5): 685–694(in Chinese with English abstract)
[9] Vázquez M D, Poschenrieder C, Corrales I, Barceló J. Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. Plant Physiol, 1999, 119: 435–444
[10] Yu H-N(俞慧娜), Liu P(刘鹏), Xu G-D(徐根娣). Responses of growth and chlorophyll fluorescence characteristics of soybean to aluminum. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(3): 257–265(in Chinese with English abstract)
[11] Li C-S(李朝苏), Liu P(刘鹏), Xu G-D(徐根娣), Zhang X-Y(张晓燕), He W-B(何文彬), Zhou D-Y(周迪莹). Ameliorating effects of exogenous organic acids on aluminum toxicity in buckwheat seedlings. Acta Agron Sin (作物学报), 2006, 32(2): 532–539(in Chinese with English abstract)
[12] Yu H-N(俞慧娜), Liu P(刘鹏), Xu G-D(徐根娣), Chen W-R(陈文荣), Zhou J(周菁), Li C-Y(李传勇). Comparative study on root growth and chlorophyll fluorescence characteristics of soybean with aluminum responses. J Shanghai Jiaotong Univ (Agri Sci)(上海交通大学学报·农业科学版), 2007, 25(2): 138–146(in Chinese with English abstract)
[13] Pan G-S(潘根生), Masaki T, Shigeki K(小西茂毅). Isolation of cell organelles from the lip-root cells of tea and their distribution of aluminum. Acta Agric Univ Zhejiangensis (浙江农业大学学报), 1991, 17(3): 255–258 (in Chinese with English abstract)
[14] Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots: An investigation of spatial sensitivity and the role of the root cap. J Exp Bot, 1993, 44: 437–446
[15] Wang J-S(王金胜), Ji M-X(冀满祥), Zhao R-Y(赵如意), Cheng Y-X(程玉香). Protective effect of cerium on mitochondria wheat under salinity stress. J Chin Rare Earth Soc (中国稀土学报). 1999, 17(2): 187–190 (in Chinese with English abstract)
[16] Klymchuk D O, Kordyum E L, Vorobyova T V, Chapman D K, Brown C S. Changes in vacuolation in the root apex cells of soybean seedling in microgravity. Adv Space Res, 2003, 31: 2283–2288
[17] Chen Y X, He Y F, Yang Y, Yu Y L, Zheng S J, Tian G M, Luo Y M, Wong M H. Effect of cadmium on nodulation and N2-fixation of soybean in the contaminated soils. Chemosphere, 2003, 50: 781–787
[18] Zaalishvili G, Sadumishvili T, Scalla R, Laurent F, Kvesitadze G. Electron microscopic investigation of nitrobenzene distribution and effect on plant root tip cell ultrastructure. Ecotoxicol Environ Saf, 2002, 52: 190–197
[19] Clarkson D T. Interaction between aluminum and phosphorus on root surfaces and cell wall material. Plant Soil, 1967, 27: 347–356
[20] Ma J F, Yamamoto R, Nevins D J, Matsumoto H, Brown P H. Al binding in the epidermis cell wall inhibits cell elongation of Okra hypocltyl. Plant Cell Physiol, 1999, 40: 549–556
[21] Taylor G J, Mcdonald-Stephens J L, Hunter D B. Direct measurement of aluminum uptake and distribution in single cell of Characorallina. Plant Physiol, 2000, 123: 987–996
[22] Marienfeld S, Stelzer R. X-ray microanalyses in Al – treated Avena sativa plants. J Plant Physiol, 1993, 141: 569–573
[23] Marienfeld S, Lehmannn H, Stelzer R. Ultrastructural investigations and EDX-analyses of Al treated oat (Avena sativa) roots. Plant Soil, 1995, 171: 167–173
[24] Delhaize E, Craig S, Beaton C D, Bennet R J. Jagadish V C, Randall P J. Aluminum tolerance in wheat (Triticum aestivum L.): I. Uptake and distribution of aluminum in root apices. Plant Physiol, 1993, 103: 685–693
[25] Lazof D B, Goldsmith J G, Rufty T W, Linton R W. Rapid uptake of aluminum into cells of intact soybean root tips: A microanalytical study using secondary ion mass spectrometry. Plant Physiol, 1994, 106: 1107–1114
[26] Jones D L, Kochian L V. Aluminum inhibition of 1,4,5-trisphosphate signal transduction pathway in wheat roots: A role in aluminum toxicity? Plant Cell, 1995, 7: 1913–1922
[27] Larsen P B, Degenhardt J, Tai C Y, Stenzler L M, Howell S H, Kochian L V. Aluminum-resistant Arabodopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release form roots. Plant Physiol, 1998, 117: 9–17
[28] Hu L(胡蕾), Ying X-F(应小芳), Liu P(刘鹏), Xu G-D(徐根娣), Zhu S-L(朱申龙). The effect of agriculture characters of soybean to aluminum. J Zhejiang Agric Sci (浙江农业科学), 2004, (3): 148–150 (in Chinese with English abstract)
[29] Liu P(刘鹏), Yang Y-S(杨悦锁), Xu G-D(徐根娣), Zhu S-L(朱申龙). The effect of aluminum stress on morphological and physiological characteristics of soybean root of seedling. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26(4): 49–54(in Chinese with English abstract)
[30] Liao H(廖红), Yan X-L(严小龙). Adaptive change and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Bot Sin (植物学报), 2000, 42(2): 158–163 (in Chinese with English abstract)
[31] Yang Q(杨庆), Jin H-B(金华斌). The effect of aluminum stress on N, P and Ca absorption of peanut varieties. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(2): 68–73 (in Chinese with English abstract)
[32] Zheng S J, Yang J L, He Y F, Yu X H, Zhang L, You J F, Shen R F, Matsumoto H. Immobilization of Aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol, 2005, 138: 297–303
[33] Liao H, Wan H Y, Shaff J, Wang X R, Yan X L, Kochian L V. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol, 2006, 141: 674–684
[34] Gaume A, Machler F, Frossard E. Aluminum resistance in two cultivars of Zea may L.: Root exudation of organic acids and influence of phosphorous nutrition. Plant Soil, 2001, 234: 73–81
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!