欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 839-847.doi: 10.3724/SP.J.1006.2009.00839

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

芥菜型油菜黄籽性状的遗传、基因定位和起源探讨

刘显军,袁谋志,官春云,陈社员,刘淑艳,刘忠松   

  1. 湖南农业大学油料作物研究所,湖南长沙410128
  • 收稿日期:2008-10-14 修回日期:2009-01-17 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 通讯作者: 刘忠松
  • 基金资助:

    本研究由国家自然科学基金项目(30471098),国家高新技术研究发展计划(863计划)项目(2006AA10A113)资助。

Inheritance,Mapping and Qrigin of the Yellow-Seeded Traits in Brassica juncea

LIU Xian-Jun,YUAN Mou-Zhi**,GUAN Chun-Yun,CHENille She-Yuan,LIU Shu-Yan,LIU Zhong-Song   

  1. Oilseed Research Institute,Hunan Agricultural University, Changsha 410128,China
  • Received:2008-10-14 Revised:2009-01-17 Published:2009-05-12 Published online:2009-03-23
  • Contact: LIU Zhong-Song

摘要:

油菜种皮颜色既是一个形态指示性状, 又与种子休眠和品质有关。以芥菜型油菜种皮颜色分离的2BC6F2群体为作图群体,用微卫星(SSR)等标记进行连锁定位, 并用定位标记对22份材料进行关联分析, 通过反转录-聚合酶链反应(RT-PCR)分析12份材料种皮中4-二氢黄酮醇还原酶(DFR)花色素合酶(ANS)花色素还原酶(ANR)基因的表达, 6份黄籽材料的种皮颜色基因等位性进行测定, 结果将芥菜型油菜控制种皮颜色的2个基因位点分别定位到A9B3连锁群, 并找到其两侧紧密连锁标记, 发现黄籽材料种皮颜色基因位点附近0.9 cM1.5 cM区域高度保守, 所有黑色种皮中DFRANSANR基因均表达, 所有黄色种皮中DFRANS均不表达,但ANR基因表达或不表达,黄籽材料的种皮颜色基因等位。根据这些结果结合前人研究, 认为芥菜型油菜种皮颜色基因是调控基因,黄籽为单一起源。

关键词: 芥菜型油菜, 种皮颜色, 基因定位, 关联分析, 等位性测定, 基因表达

Abstract:

Seed coat color is not only a morphological indicator but also association with dormancy and quality of seed in Braasica. The seeds of Brassica species are divided into such categories as black, brown or yellow according to their coat color. The emphasis has been put on breeding for the yellow-seeded rapeseed in recent years. Most genetic studies showed that seed coat color is controlled by two duplicate loci in Brassica juncea. Chemical analysis and DMACA (p-dimethylaminocinnamaldehyde) staining confirmed that the yellow seed coat does not contain any proanthocyanidins while the black or brown seed coat does. Dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and anthocyanidin reductase (ANR) are the key enzymes of flavonoid biosynthetic pathway leading to production of proanthocyanidins. As revealed by RT-PCR, the genes encoding DFR, ANS and ANR are not expressed in the transparent testa of B. juncea yellow seeds. The two BC6F2 populations, derived from crossing and backcrossing the yellow-seeded parent Sichuan yellow to the black-seeded Purple-leaf mustard and comprised 143 or 141 individual plants, were used to map the loci controlling seed coat color in B. juncea by using SSRs and SCARs. The twenty-two B. juncea accessions collected from all over the world were genotyped for association analysis using the markers mapped. The expression of the genes encoding DFR, ANS, and ANR in seed coat at 20 days after pollination was investigated by RT-PCR in the twelve accessions. The allelism test was carried out by a diallel cross for the six yellow-seeded accessions from China, Canada, India or Russia. We mapped the two loci A and B controlling seed coat color on the linkage groups A9 and B3, receptively, and found the 22 linked markers flanking these loci. The closest markers flanking the locus A on A9 were the co-dominant markers SCM08 and Ni4-C09, which are 0.5 and 1.6 cM far from the locus, respectively. Although the marker CB10298 on one side of the locus B on B3 was also a co-dominant SSR marker with 0.8 cM from locus B, on the other side a RAPD marker S1096-700 with 3.3 cM apart. The 0.9 and 1.5 cM-long chromosomal regions around these loci were revealed by association analysis to be conserved in all the yellow-seeded accessions genotyped. The expression of the genes DFR and ANS was not detected by RT-PCR in the yellow-seeded accessions investigated although these genes were found to be expressed in seed coat of all the black-seeded ones. The gene ANR was strongly expressed in all the black-seeded accessions studied, and not or weakly expressed in the yellow-seeded accessions. The F1 plants of the fifteen combinations from diallel crossing of the six yellow-seeded accessions all produced yellow seeds, indicating the loci for seed coat color were allelic to each other in these parents. It is proposed from these results and previous studies that the gene controlling seed coat color is a transcription-factor-coding gene and all the yellow-seeded accessions derive from a single origin in Brassica juncea.

Key words: Brassica Juncea, Seed coat color, Genetic mapping, Association analysis, Allelism, Gene expression


[1] Chen G-H(陈功华), Tian S-L(田森林), Liu S-Y(刘淑艳). Breeding and utilization of yellow-seeded rapeseed. Crop Res (作物研究), 2005, 19: 126–128(in Chinese)

[2] Liu H-L(刘后利). Genetics and Breeding of Rapeseed (油菜遗传育种学). Beijing: China Agricultural University Press, 2000(in Chinese)

[3] Lipsa F D, Snowdon R, Friedt W. Improving rapeseed meal quality by reduction of condensed tannins. Proc 12th Intl Rapeseed Cong, Wuhan, China, March 2007, 2: 135–137

[4] Marles M A S, Gruber M Y. Histochemical characterization of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251–262

[5] Zeng K(曾盔), Liu Z-S(刘忠松), Long S(龙桑), Yan M-L(严明理). UV-Vis spectrum difference of polyphenols between yellow and black seed coats of Brassica juncea. Acta Agron Sin (作物学报), 2007, 33(3): 476–481(in Chinese with English abstract)

[6] Yan M-L(严明理). Studies on the molecular mechanism of yellow-seeded formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, 2007(in Chinese with English summary)

[7] Yan M-L(严明理), Liu X-J(刘显军), Liu Z-S(刘忠松), Guan C-Y(官春云), Yuan M-Z(袁谋志), Xiong X-H(熊兴华). Cloning and expression analysis of the dihydroflavonol 4-reductase gene in Brassica juncea. Acta Agron Sin (作物学报), 2008, 34(1): 1–7(in Chinese with English abstract)

[8] Liu S-Y(刘淑艳), Liu Z-S(刘忠松), Guan C-Y(官春云). Advances in germplasm of oilseed Brassica juncea. J Plant Genet Res (植物遗传资源学报), 2007, 8(3): 351–358(in Chinese with English abstract)

[9] Yan M-L(严明理), Liu Z-S(刘忠松), Guan C-Y(官春云), Chen S-Y(陈社员). Inheritance and SCAR markers for seed coat color in Brassica juncea. Proc Annual Meeting, Crop Science Society of China, Kunming, China, Oct, 2006. pp 100–106(in Chinese with English abstract)

[10] Liu Z-S(刘忠松), Guan C-Y(官春云). Genetic and breeding studies of wide crosses of Brassica: VI. Studies o f the location of several genes to the genomes in Brassica juncea. J Hunan Agric Univ (湖南农业大学学报), 1997, 23: 15–18(in Chinese with English abstract)

[11] Choudhary B R, Solanki Z S. Inheritance of siliqua locule number and seed coat color in Brassica juncea. Plant Breed, 2007, 126: 104–106

[12] Padmaja K L, Arumugam N, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Mapping and tagging of seed coat color and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea. Theor Appl Genet, 2005, 111: 8–14

[13] Vera C L, Woods D L. Isolation of independent gene pairs at two loci for seed coat color in Brassica juncea. Can J Plant Sci, 1982, 62: 47–50

[14] Negi M S, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat color in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet, 2000, 101: 146–152

[15] Sabharwal V, Negi M S, Banga S S, Lakshmikumaran M. Mapping of AFLP markers linked to seed coat color loci in Brassica juncea (L.) Czern. Theor Appl Genet, 2004, 109: 160–166

[16] Ramchiary N, Padmaja K L, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Ramchiary N, Pradhan A K. Mapping of yield influencing QTL in Brassica juncea: Implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet, 2007, 115: 807–817

[17] Yan M L, Liu Z S, Guan C Y, Chen S Y, Yuan M Z, Liu X J. Molecular markers for the seed coat color in Brassica juncea. Proc 12th Intl Rapeseed Cong, Science Press USA Inc., Wuhan, March 2007. pp 325–329

[18] King G. Microsatellite information exchange for Brassica. 2006.

[2008-10-14] http://www.brassica.info/resource/markers/ ssr-exchange.php

[19] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103: 455–461

[20] Oraguzie N C, Rikkerink E H A, Gardiner S E, De Silva H N. Association mapping in plants. Springer, 2007

[21] Yan M-L(严明理), Liu Z-S(刘忠松), Guan C-Y(官春云), Chen S-Y(陈社员), Liu X-J(刘显军), Yuan M-Z(袁谋志). Cloning and sequence analysis of flavonoid biosynthesis genes in Brassica juncea. Sci Agric Sin (中国农业科学), 2007, 40(12): 2688–2695 (in Chinese with English abstract)

[22] Choi S R, Teakle G R, Plaha P, Kim J H, Allender C J, Beynon E, Piao Z Y, Soengas P, Han T H, King G J, Barker G C, Hand P, Lydiate D J, Batley J, Edwards D, Koo D H, Bang J W, Park B S, Lim Y P. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet, 2007, 115: 777–792

[23] Piquemal J, Cinquin E, Couton F. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514–1523

[24] Panjabi P, Jagannath A, Bisht N C, Padmaja K L, Sharma S, Gupta V, Pradhan A K, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: Homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics, 2008, 9: 113, DOI: 10.1186/1471-2164-9-113

[25] Liu Z W, Fu T D, Tu J X, Chen B Y. Inheritance of seed color and identification of RAPD and AFLP markers linked to the seed color gene in rapeseed (Brassica napus L.). Theor Appl Genet, 2005, 110: 303–310

[26] Liu X P, Tu J X, Chen B Y, Fu T D. Identification and inheritance of a partially dominant gene for yellow seed color in Brassica napus. Plant Breed, 2005, 124: 9–12

[27] Xiao S S, Xu J, Li Y, Zhang L, Shi S, Shi S, Wu J, Liu K. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 2007, 50: 611–618

[28] Lou P, Zhao J J, Kim J S, Shen S X, Carpio D P D, Song X F, Jin M, Vreugdenhil D, Wang X W, Koornneef M, Bonnema G. Quantitative trait loci for ?owering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot, 2007, 58: 4005–4016

[29] Mun J H, Kwon S J, Yang T J, Kim H S, Choi B S, Baek S, Kim J S, Jin M, Kim J A, Lim M H, Lee S I, Kim H I, Kim H, Lim Y P, Park B S. The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics, 2008, 9: 280, DOI: 10.1186/1471-2164-9-280

[30] Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006, 57: 405–430

[31] Dubos C, Gourrierec J L, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J, Alboresi A, Weisshaar B, Lepiniec L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J, 2008, 55: 940–953

[32] Von Wettstein D. From analysis of mutants to genetic engineering. Annu Rev Plant Biol, 2007, 58: 1–19

[33] Matsui K, Umemura Y, Ohme-Takag M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J, 2008, 55: 954–967

[34] Snowdon R, Hasan M, Freitag N, Lipsa F, Wittkop B, Stein A, Badani A G, Friedt W. Dissection of quantitative traits in oilseed rape for marker development using Brassica-Arabidopsis comparative genomics. Proc 12th Intl Rapeseed Cong, March 2007, Wuhan, China, pp 241–244

[35] Rahamn M M, Hirata Y. Homology of seed coat color specific marker of Brassica juncea with brown seeded cultivar of B. rapa. J Biol Sci, 2004, 4: 731–734
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[6] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[7] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[12] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[13] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[14] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[15] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!