欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 932-939.doi: 10.3724/SP.J.1006.2010.00932

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

绿豆遗传连锁图谱的整合

赵丹,程须珍,王丽侠,王素华,马燕玲   

  1. 中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2009-11-07 修回日期:2010-03-19 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 程须珍,E-mail: Chengxz@caas.net.cn; Tel: 010-62189159
  • 基金资助:

     本研究由国家食用豆产业技术体系建设项目(nycytx-18), 食用豆行业科技专项(nyhyzx07-017), 国家自然科学基金项目(30871565)和中央级科研院所社会公益研究专项(092060302-12)资助。

Integration of Mungbean(Vigna radiata) Genetic Linkage Map

DIAO Dan,CHENG Xu-Zhen,WANG Li-Xia,WANG Su-Hua,MA Yan-Ling   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2009-11-07 Revised:2010-03-19 Published:2010-06-12 Published online:2010-04-14
  • Contact: CHENG Xu-Zhen,E-mail: Chengxz@caas.net.cn; Tel: 010-62189159

摘要:

利用绿豆及其近缘种的701对SSR引物对现有绿豆遗传连锁图谱进行补充,结果在高感豆象绿豆栽培种Berken和高抗豆象绿豆野生种ACC41两亲本间筛选到多态性SSR引物103对。群体分析后,结合其他分子数据,使用作图软件Mapmaker/Exp 3.0b,获得一张含有178个遗传标记和12个连锁群,总长1 822.9 cM、平均图距10.30 cM的新遗传连锁图谱,其中96个SSR标记,90个来自绿豆近缘种,RFLP标记76个、RAPD标记4个、STS标记2个;对32个绿豆、小豆共用SSR标记在遗传连锁图谱的分布分析发现,二个基因组间有一定程度的同源性,共用标记在连锁群上的排列顺序基本上一致,只有部分标记显示绿豆和小豆基因组在进化过程中发生了染色体重排;利用新图谱对ACC41的抗绿豆象主效基因重新定位,仍定位于I(9)连锁群,与其相邻分子标记的距离均小于8 cM,其中与左翼SSR标记C220的距离约2.7 cM,该标记来自菜豆的第9连锁群。与原图谱比较,新定位的抗性基因与其相邻标记的连锁更加紧密。

关键词: 绿豆, 遗传连锁图谱, SSR标记, 图谱比较, 抗豆象基因

Abstract:

A high-density genetic linkage map with informative markers is essential for plant genome analysis, including gene mapping, identification of quantitative trait locus (QTL), map-based cloning, and physical map construction. One genetic linkage map of mungbean (Vigna radiata, 2n=2x=22) for the recombinant inbred line population (RIL) derived from an intersubspecific cross between a highly bruchid-susceptible cultivar Berken and a highly bruchid-resistant wild type ACC41 (V. radiata subsp. sublobata) was established. A total of 103 polymorphic SSR markers were screened from 701 pairs markers for density-enhancement of the previous map. Along with other marker data, a new genetic linkage map was constructed by using Mapmaker/Exp 3.0b, with 178 markers, including 96 SSR among which 90 locus from mungbean closely related species, 76 RFLP, four RAPD and two STS, spanning 12 linkage groups, covering total length 1 822.9 cM of the mungbean genome, with an average marker interval distance of 10.30 cM. In the study, we determined the SSR markers transferability of close relatives of mungbean including adzuki bean (Vigna angularis L.), black gram (Vigna mungo L.), common bean(Phaseolus vulgaris), cowpea (V. unguiculata) into mungbean genome. A total of 597 pairs SSR primers were tested and about 65%, 72%, 42%, 30% SSR markers above species respectively were effectively amplified in mungbean, indicating a certain degree of homology between these five genomes, and 97 pairs of polymorphic SSR screened from closely related species can be effectively used in the molecular genetic study of mungbean. Then the new map was compared with the map published for Azuki bean (Vigna angularis,2n=2x=22, n=11) using 32 SSR markers. Most of markers’ order in the two linkage maps was found to be highly conserved. However, chromosome rearrangement was occurred in two genomes after they diverged. In the new map, the major bruchid resistant gene was still mapped on LG I(9) with distances of less than 8.0 cM to the flanking markers, among which, the distance to SSR marker C220 which came from the LG 9 of common bean was less than 3.0 cM. Compared with the previous map, the mew location of the resistance gene is more closely linked with adjacent markers.

Key words: Mungbean, SSR, Genetic linkage map, Comparative mapping, Bruchid resistant gene

[1]Lin R-F(林汝法), Chai Y(柴岩), Liao Q(廖琴), Sun S-X(孙世贤). Minor Crops in China(中国小杂粮). Beijing: Chinese Agriculture Press, 2002. pp 192-209 (in Chinese)
[2]Zheng Z-J(郑卓杰). Food Legumes in China (中国食用豆类学). Beijing: Chinese Agriculture Press, 1995. pp 141-166 (in Chinese)
[3]Menancio-Hautea D, Kumar L, Danesh D, Young N D. A Genome Map for Mungbean
[4]
[Vigna radiata(L.) Wilczek] Based on DNA Genetic Markers (2n = 2x = 22) In: O'Brien J S ed. Genetic Maps 1992, A Compilation of Linkage and Restriction Maps of Genetically Studied Organisms. NY, USA: Cold Spring Harbor Laboratory Press, 1993. pp 6259-6261
[5]Lambrides C J, Lawn R J, Godwin I D. Two genetic linkage maps of mungbean using RFLP and RAPD markers
[J].Austr J Agric Resourc
[6]Humphry M E, Konduri V, Lambrides C J, Magner T, McIntyre C L, Aitken E A B, Liu C J. Development of a mungbean (Vigna radiate L.) Wilczek] RFLP linkage map and its comparison with lablab (Lablab purpureus) reveal a high level of colinearity between the two genomes. Theor Appl Genet, 2002, 105: 160-166
[7]Sholihin, Hautea D M. Molecular mapping of drought resistance in mungbean
[8]
[Vigna radiata(L.) Wilczek]: 1. Linkage map in mungbean using AFLP markers. J Biotechnol Pertanian, 2002, 7: 17-24
[9]Chen H M, Liu C A, Kuo C G, Chien C M, Sun H C, Huang C C, Lin Y C , Ku H M. Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mungbean. Euphytica, 2007, 157: 113-22
[10]Klos K L E, Paz M M, Marek L F, Cregan P B, Shoemaker R C. Molecular markers useful for detecting resistance to brown stem rot in soybean
[J].Crop Sci
[11]Kumar S V, Tan S G, Quah S C, Yusoff K. Isolation and characterization of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata
[J].Mol Ecol Notes
[12]Kumar S V, Tan S G, Quah S C, Yusoff K. Isolation of microsatellite markers in mungbean, Vigna radiata
[J].Mol Ecol Notes
[13]Miyagi M, Humphry M, Ma Z Y, Lambrides C J, Bateson M, Liu C J. Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean
[J].Theor Appl Genet
[14]Gwag J G, Chung J W, Chung H K, Lee J H, Ma K H, Dixit A, Park Y J, Cho E G, Kim T S, Lee S H. Characterization of new microsatellite markers in mungbean (Vigna radiata L)
[J].Mol Ecol Notes
[15]Liu C-Y(刘长友), Cheng X-Z(程须珍), Wang S-H(王素华), Wang L-X(王丽侠), Sun L(孙蕾), Mei L(梅丽), Xu N(徐宁). The screening of SSR and STS markers for genetic diversity analysis of mungbean. J Plant Genet Res (植物遗传资源学报), 2007, 8(3): 298-302 (in Chinese with English abstract)
[16]Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the Genus and other legume genera: Implications for the transferability of SSRs in plants. Mol Biol Evol, 1998, 15: 1275-1287
[17]Sharma R K, Gupta P, Sharma V, Sood A, Mohapatra T, Ahuja P S. Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo. Genome, 2008, 51: 91-103
[18]J Kingston R W. Berken-a new mungbean variety. Qld Agric J, 1975, 101: 659-661
[19]Lawn R J, Cottrel1. A Wild mungbean and its relatives in Australia. Biologist, 1988, 35: 267-273
[20]Rebetzke G J. Attributes of Potential Adaptive and Agronomic Significance in the Wild Mungbean (Vigna radiate L.) Wikzek ssp. Sublobata (Roxb.) Verdc.). Brisbane, Australia: MS Dissertation of University of Queensland, 1994
[21]Ji W(季伟), Wang L-X(王立新), Sun H(孙辉), Wang M-Y(王茅雁), Zhao C-P(赵昌平). Predigestion of wheat SSR analysis protocol. J Agric Biotechnol (农业生物技术学报), 2007, 15(5): 907-908 (in Chinese with English abstract)
[22]Mei L(梅丽), Wang S-H(王素华), Wang L-X(王丽侠), Liu C-Y(刘长友), Sun L(孙蕾), Xu N(徐宁), Liu C-J(刘春吉), Cheng X-Z(程须珍).Mapping of genes resistant to bruchid in mungbean using recombinant inbred lines population. Acta Agron Sin(作物学报), 2007, 33(10): 1601-1605(in Chinese with English abstract)
[23]Han O K, Kaga A, Isemura T, Wang X W, Tomooka N, Vaughan D A. A genetic linkage map for azuki bean
[24]em>Vigna angularis
(Willd.) Ohwi & Ohashi]
[J].Theor Appl Genet
[25]Song X-L(宋宪亮), Sun X-Z(孙学振), Zhang T-Z(张天真). Segregation distortion and its effect on genetic mapping in plants. J Agric Biotechnol (农业生物技术学报), 2006, 14(2): 286-292 (in Chinese with English abstract)
[26]Li W-H(李卫华), Liu W(刘伟), You M-S(尤明山), Xu J(许杰), Liu C-L(刘春雷), Li B-Y(李保云), Liu G-T(刘广田). Construction of wheat molecular linkage map using different SSR markers and the polymorphism of the markers. J Triticeae Crops (麦类作物学报), 2007, 27(1): 1-6 (in Chinese with English abstract)
[27]Wang Z-L(王竹林), Liu S-D(刘曙东), Liu H-Y(刘惠远), He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民). Genetic linkage map in ‘Bainong 64 × ‘Jingshuang 16 of wheat. Acta Bot Boreal-Occident Sin (西北植物学报), 2006, 26(5): 886-892 (in Chinese with English abstract)
[28]Fatokun C A, Menancio-Hautea D I, Danesh D, Young N D. Evidence for orthologous seed weight genes in cowpea and mungbean based on RFLP mapping. Genetics, 1992, 132: 841-846
[29]Pereira M G, Lee M. Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet, 1995, 90: 380-388
[30]Menancio-Hautea D, Fatokun C A, Kumar L, Danesh D, Young N D. Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea(V. unguiculata L.) Walpers using RFLP mapping data. Theor Appl Genet, 1993, 86: 797-810
[31]Boutin S R, Young N D, Olsen T C, Yu Z H, Shoemaker R C, Vallejos C E. Genome conservation among three legume genera detected with DNA markers. Genome, 1995, 38: 928-937
[32]Pereira M G, Lee M. Identification of genomic regions affecting plant height in shorghum and maize. Theor Appl Genet, 1995, 90: 380-388
[33]Lagercrantz U. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time
[J].Plant J
[1] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[4] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[5] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[6] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[7] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[8] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[9] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[10] 于奇,冯乃杰,王诗雅,左官强,郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J]. 作物学报, 2019, 45(7): 1080-1089.
[11] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[12] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[13] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[14] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[15] 王宏民,成小芳,樊艳平,郑海霞,张耀文,张仙红. 绿豆不同品种对绿豆象的抗性初探[J]. 作物学报, 2018, 44(8): 1136-1141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!