作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1135-1143.doi: 10.3724/SP.J.1006.2010.01135
肖东1,2,**,肖阳3,**,蔡应繁4,邓小峰1,5,吴锁伟1,郑旭1,3,李晚忱5,吴翠平1,2,费章君6,牛应泽2,*,杨建平1,4,*
XIAO Dong1,2, XIAO Yang3,**, CAI Ying-Fan4, DENG Xiao-Feng1,5, WU Suo-Wei1, ZHENG Xu1,3, LI Wan-Chen5, WU Cui-Ping1,2, FEI Zhang-Jun6, NIU Ying-Ze2,*,YANGJian-Ping1,4,*
摘要: 分析27个代表番茄不同发育阶段和生物反应的组织特异性、含有152 635个独立EST数据库的数码表达,发现果胶裂解酶基因 (pectate lyase, SlPEL) 和番茄AP2 Like (SlAPL)的转录受果实成熟的调节。以授粉后不同发育时期的番茄(品种为美味樱桃)果实为试材, 用半定量PCR和荧光实时定量PCR分析SlPEL的表达模式,结果表明,授粉后12 d,其表达水平明显上升;授粉后16~18 d,达到第一个小高峰;28 d到最高峰;从28 d到完全成熟逐步下降到第一个小高峰的水平。SlAPL的表达模式与SlPEL类似,但其表达启动的时期迟于SlPEL。从授粉后25 d,SlAPL转录启动;授粉后28~32 d,其转录水平上升到第一个小高峰;39 d达到最高峰,以后到完全成熟略有下降。该研究也印证利用EST的数据库进行基因数码表达分析的可行性。
[1] Lu C-G(陆春贵), Xu H-L(徐鹤林), Yang R-C(杨荣昌), Yu W-G(余文贵). Storage-linked physiological characters of tomato carrying fruit ripening mutant genes and their implications in breeding. Jiangsu J Agric Sci (江苏农业学报), 1994, 10(3): 5-l0 (in Chinese with English abstract) [2] Périn C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech J C, Latché A, Pitrat M, Lelièvre J M. Molecular, genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol, 2002, 129: 300-309 [3] Lei D-F(雷东锋), Li J-J(李剑君), Zhang Y(张宴), Bai X-Y(白西元), Wang C(王晨), Zhao W-M(赵文明). The latest development about regulation and controlling of fruit ripening gene. Acta Bot Borea-Occident Sin (西北植物学报), 2002, 20(1): 149-157 (in Chinese with English abstract) [4] Hadfield K A, Rose J K C, Yaver D S. Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening associated pectin disassembly. Plant Physiol, 1998, 117: 363-373 [5] Wing R A, Yamaguchi J, Larabell S K, Ursin V M, McCormick S. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol Biol, 1990, 14:17-28 [6] Domingo C, Roberts K, Stacey N J, Connerton I, Ruíz-Teran F, McCann M C. A pectate lyase from Zinnia elegans is auxin inducible. Plant J, 1998, 13: 17-28 [7] Willats W G T, McCartney L, Mackie W, Knox J P. Pectin: Cell biology and prospects for functional analysis. Plant Mol Biol, 2001, 47: 9–27 [8] Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering Plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J, 1993, 3: 1-30 [9] Dominguez-Puigjaner E, Llop I, Vendrell M, Prat S. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases. Plant Physiol, 1997, 114: 1071–1076. [10] Medina-Escobar N, Cardenas J, Moyano E, Caballero J L, Munoz-Blanco J. Cloning, molecular characterization and expression pattern of a strawberry ripening-specific cDNA with sequence homology to pectate lyase from higher plants. Plant Mol Biol 1997, 34: 867–877 [11] Nunan K J, Davies C, Robinson S P, Fincher G B. Expression patterns of cell wall-modifying enzymes during grape berry development. 2001, Planta, 214: 257-264 [12] Jimenez-Bermudez S, Redondo-Nevado J, Muooz-Blanco J, Caballero J L, Lopez-Aranda J M, Valpuesta V, Pliego-Alfaro F, Quesada M A, Mercado J A. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase. Plant Physiol, 2002, 128: 751-759 [13] Fei Z-59, Tang X, Alba R M, White J A, Ronning C M, Martin G B, Tanksley S D, Giovannoni J J. Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J, 2004, 40: 47 [14] Mbéguié-A-Mbéguié D, Hubert O, Baurens F C, Matsumoto T, Chillet M, Fils-Lycaon B, Sidibé-Bocs S. Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with ?nger drop. J Exp Bot, 2009, 60: 2021-2034 [15] Liu C-D(刘存德). Fruit ripening and gene controlling. Bull Biol (生物学通报), 1999, 34(1): 4-6 (in Chinese with English abstract) [16] Ohto M, Floyd S K, Fischer R L, Goldberg R B, Harada J J.Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod, 2009, 22: 277-289 [17] McMurchie E J, McGlasson W B, Eaks I L. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature, 1972, 237: 235-236 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[3] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[4] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[5] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[6] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[7] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[8] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[9] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[10] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[11] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
[12] | 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2a和GmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032. |
[13] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
[14] | 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543. |
[15] | 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861. |
|