欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1336-1341.doi: 10.3724/SP.J.1006.2010.01336

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

3个水稻WAX2同源基因表达的组织特异性及逆境响应特征

高国赋1,2,邹杰1,周小云1,刘爱玲1,3,魏宝阳3,陈信波1,3,*   

  1. 1湖南农业大学作物基因工程湖南省重点实验室,湖南长沙410128;2湖南省农业科学院科技情报研究所,湖南长沙410125;3湖南农业大学生物科学技术学院,湖南长沙410128,China
  • 收稿日期:2010-02-09 修回日期:2010-04-21 出版日期:2010-08-12 网络出版日期:2010-05-20
  • 通讯作者: 陈信波。E-mail: xinbochen@live.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2009ZX08001-026B)和湖南省科技重大专项(2009FJ1004-1)资助.

Tissue Speciality and Stress Responses in Expression of Three WAX2 Homologous Genes in Rice

GAO Guo-Fu1,2,ZOU Jie1,ZHOU Xiao-Yun1,LIU Ai-Ling1,3,WEI Bao-Yang3,CHEN Xin-Bo1,3,*   

  1. 1 Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha 410128, China; 2 Research Institute of Science and Technology Information, Hunan Academy of Agricultural Sciences, Changsha 410125,China; 3 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
  • Received:2010-02-09 Revised:2010-04-21 Published:2010-08-12 Published online:2010-05-20
  • Contact: CHEN Xin-Bo。E-mail: xinbochen@live.cn

摘要: 利用拟南芥的WAX2基因序列BLAST检索出3个水稻同源基因,命名为OsWAX2-1、OsWAX2-2OsWAX2-3,与拟南芥WAX2基因的同源性分别为56.0%、55.2%和52.0%;其预测的编码蛋白与WAX2蛋白的同源性分别为61.5%、60.5%和64.7%。这3个蛋白都分别存在4个跨膜结构区和1个甾醇去饱和酶的保守区,说明它们都属于跨膜蛋白并可能与角质层的蜡质合成有关。采用半定量RT-PCR方法检测3个OsWAX2基因在水稻不同部位的表达情况,及高温、低温、NaCI、PEG和ABA 5种处理对3个OsWAX2基因在转录水平表达的影响。结果表明,3个OsWAX2基因在水稻中的表达存在时空差异,3个基因在水稻萌动的胚中表达都很高,OsWAX2-3基因在叶中的表达量最高;3个OsWAX2基因对高温、低温、盐、干旱及ABA胁迫响应也存在差别,OsWAX2-1只在ABA处理时增强表达;OsWAX2-2受ABA、高温、低温、盐、干旱胁迫诱导并且响应迅速。这一结果为进一步研究OsWAX2基因在水稻生长发育过程及逆境胁迫下的功能与作用机制提供了参考。

关键词: 水稻, WAX2同源基因, 半定量RT-PCR, 表达, 逆境响应

Abstract: Plant surface is covered by epidermis with a layer of wax. It can regulate non-stomatal water loss, protect against ultraviolet radiation damage and germ invasion. WAX2 gene in Arabidopsis is involved in cuticular wax production and significantly affects leaf water evaporation. Three WAX2 homologous genes in rice, named OsWAX2-1, OsWAX2-2, OsWAX2-3 were found by BLAST search in the NCBI database, with the homology of 56.0%, 55.2%, and 52.0% to Arabidopsis WAX2 gene respectively. Homology of their predicted proteins to Arabidopsis WAX2 protein was 61.5%, 60.5%, and 64.7%, respectively. All of the three proteins had four transmembrane domains and a conserved sterol desaturase domain, suggesting that OsWAX2 proteins are transmembrane proteins and may be related to plant cuticular wax biosynthesis. Expression patterns of the three rice WAX2 homologs were analyzed using semi-quantitative RT-PCR. The results showed that the three OsWAX2 genes had tissue speciality in expression. They also exhibited different expression patterns under high-temperature, low temperature, NaCl, PEG and ABA treatments. These results could be useful for further functional characterization of the three OsWAX2 genes.

Key words: Rice, WAX2 homologous genes, Semi-quantitative RT-PCR, Expression, Stress response

   [1]    Richards R A, Rawson H M, Johnson D A. Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Aust J Plant Physiol, 1986, 13: 465–473   
[2]    Johnson D A, Richard R A, Turner N C. Yield, water relations, gas exchange and surface reflectance of near isogenic wheat lines differing in glaucousness. Crop Sci, 1983, 23: 318–323   
[3]    Rawson H M, Clarke J M. Nocturnal transpiration in wheat. Aust J Plant Physiol, 1988, 15: 387–406   
[4]    Chen X B, Goodwin S M, Boroff V L, Liu X L, Jenks M A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 2003, 15: 1170–1185   
[5]    Kurata J, Kawabata-Awai C, Sakuradani E, Shimizu S, Okada K, Wada T. The YORE-YORE gene regulates multiple aspects of epi dermical cell differentiation in Arabidopsis. Plant J, 2003, 36: 55–66   
[6]    Sanchez F J, Manzanares M, Andres E F, Tenorio J L, Ayerbe L. Residual transpiration rate, epicuticular wax loadand leaf colour of pea plants in drought conditions: influence on harvest index and canopy temperature. Eur J Agron, 2001, 15: 57–70   
[7]    Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14(suppl): 165–183   
[8]    Sanchez F J, Manzanares M, Andres E F, Tenorio J L, Ayerbe L. Residual transpiration rate, epicuticular wax loadand leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur J Agron,2001, 15: 57–70   
[9]    Samdur M Y, Manivel P, Jain V K, Chikani B M, Gor H K, Desai S, Misra J B. Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut. Crop Sci, 2003, 43: 1294–1299
[10]    Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 2005, 42: 689–707
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[10] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[11] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[12] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[13] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[14] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[15] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!