欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1324-1335.doi: 10.3724/SP.J.1006.2010.01324

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

用生物信息学挖掘玉米中的microRNAs及其靶基因

张志明,宋锐,彭华,罗茂,沈亚欧,刘丽,赵茂俊,潘光堂*   

  1. 四川农业大学玉米研究所,四川雅安625014
  • 收稿日期:2009-12-30 修回日期:2010-04-16 出版日期:2010-08-12 网络出版日期:2010-05-20
  • 通讯作者: 潘光堂, E-mail: pangt1956@yahoo.com.cn; Tel: 0835-2882714
  • 基金资助:

    本研究由国家自然科学基金项目(30900901)和教育部高等学校博士学科点专项科研基金项目(20095103120002)资助.

Bioinformatic Prediction of MicroRNAs and Their Target Genes in Maize

ZHANG Zhi-Ming,SONG Rui,PENG Hua,LUO Mao,SHEN Ya-Ou,LIU Li,ZHAO Mao-Jun,PAN Guang-Tang*   

  1. Maize Research Institute,Sichuan Agricultural University,Ya'an 625014,China
  • Received:2009-12-30 Revised:2010-04-16 Published:2010-08-12 Published online:2010-05-20
  • Contact: PAN Guang-Tang, E-mail: pangt1956@yahoo.com.cn; Tel: 0835-2882714

摘要: microRNA (miRNA)是一类内源性的、19~24碱基长度的小分子非编码RNA,通过碱基互补调控靶基因的表达,在多细胞生物的基因表达调控过程中扮演着十分重要的角色。植物中的miRNAs具有高度的保守性,这为通过同源比对发现保守的miRNAs提供了思路和途径。本研究通过对拟南芥、水稻等植物已知的miRNAs与玉米EST和GSS数据库的比对,并设置一系列严格的筛选标准,共筛选到23条新的玉米miRNAs;利用WMD 3在线植物miRNAs靶基因预测软件,对新发现的玉米miRNAs进行靶基因预测,总共预测到89个靶基因,进一步功能分析发现这些靶基因参与玉米的生长发育、信号转导、转录调节、新陈代谢及逆境胁迫响应等调控过程。

关键词: microRNA(miRNA), 生物信息学, 预测, 靶基因, 玉米

Abstract: microRNAs (miRNAs) are an extensive class of endogenous, non-coding, short (19–24 nt) RNA molecules directly involved in regulating gene expression at the post-transcriptional level and played an important role in gene expression regulation. Previous reports have noted that plant miRNAs are highly conserved, which provides the foundation for identification of miRNAs in plant species through homology alignment. With the method of bioinformatic computation, all previously known miRNAs in Arabidopsis, rice, and other plant species were blasted against maize EST (expressed sequence tags) and GSS (genomic survey sequence) sequences to select novel miRNAs in maize by a series of filtering criteria. A total of 23 conserved miRNAs were identified and predicted the target genes by a web-based integrated computing system, WMD 3. Total of 89 miRNA targets were predicted and verified to be involved in maize growth and development, signal transduction, transcriptional regulation, metabolism, and stress responses.

Key words: microRNA, Bioinformatics, Prediction Target genes, Maize

[1]Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297
[2]Jin L-G(金龙国), Wang C(王川), Liu J-Y(刘进元). Plant micro RNA. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 2006, 22(8): 609-614 (in Chinese with English abstract)
[3]Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants
[J].Annu Rev Plant Biol
[4]Zhang B, Pan X, Cannon C H, Cobb G P, Anderson T A. Conservation and divergence of plant microRNA genes
[J].Plant J
[5]Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe D C. Cloning and characterization of microRNAs from moss
[J].Plant J
[6]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis
[J].Plant Cell
[7]Sunkar R, Girke T, Jain P K, Zhu J K. Cloning and characterization of microRNAs from rice
[J].Plant Cell
[8]Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J. miRBase: microRNA sequences, targets and gene nomenclature
[J].Nucl Acids Res
[9]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843-854
[10]Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher R L, Moulton V, Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening
[J].Genome Res
[11]Qiu D Y, Pan X P, Wilson W I, Li F, Liu M, Teng W, Zhang B. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 2009, 436: 37-44
[12]Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA
[J].Mol Cell
[13]Bonnet E, Wuyts J, Rouzé P, Van de Peer Y. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important targets
[J].Proc Natl Acad Sci USA
[14]Zhang B H, Pan X P, Wang Q L, Cobb G P, Anderson T A. Identification and characterization of new plant microRNAs using EST analysis
[J].Cell Res
[15]Llave C, Xie Z, Kasschau K D, Carrington J C. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002, 297: 2053-2056
[16]Ye M(叶茂), Chen Y-L(陈跃磊), Ming Z-H(明镇寰). Progress in the research of miRNAs (microRNAs) family. Prog Biochem Biophys (生物化学与生物物理进展), 2003, 30(3): 370-374 (in Chinese with English abstract)
[17]Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs
[J].Plant J
[18]Ambros V. A uniform system for microRNA annotation. RNA, 2003, 9: 277-279
[19]Zhang Q(张旗), He X-J(何湘君), Pan X-Y(潘秀英). Real-time quantification of microRNAs by RNA-tailing and primer- extension RT-PCR. J Peking Univ (Health Sci), 2007, 39(1): 87-91
[20]Hu X-L(胡晓丽), Li D-Q(李德全). Protein phosphatase 2C in plants and its functions of signal transduction. Plant Physiol Commun (植物生理学通讯), 2007, 43(3): 407-410 (in Chinese with English abstract)
[21]Hu X-B(胡学博), Song F-M(宋凤鸣), Zheng Z(郑重). The structure and function of protein phosphatase 2Cs in higher plants. Chin J Cell Biol (细胞生物学杂志), 2005, 27(): 29-34 (in Chinese with English abstract)
[22]Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling
[J].Trends Plant Sci
[23]Demarco A, Roubelakis-Angelakis K A. Laccase activity could contribute to cell wall reconstitution of regenerating protoplasts
[J].Phytochemistry
[24]Li L, Steffen S J C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 2002, 215: 239-247
[25]Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. Transparent TESTA 10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in arabidopsis seed coat
[J].Plant Cell
[26]Wang G-D(王国栋), Chen X-Y(陈晓亚). The properties, functions, catalytic mechanism and applicability of laccase. Chin Bull Bat (植物学通报), 2003, 20(4): 469-475 (in Chinese with English abstract)
[27]Zhang L F, Chia J, Kumari S, Stein J C, Liu Z J, Narechania A, Maher C A, Guill K, McMullen M D, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet, 2009, 5(11): e1000716
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!