作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1324-1335.doi: 10.3724/SP.J.1006.2010.01324
张志明,宋锐,彭华,罗茂,沈亚欧,刘丽,赵茂俊,潘光堂*
ZHANG Zhi-Ming,SONG Rui,PENG Hua,LUO Mao,SHEN Ya-Ou,LIU Li,ZHAO Mao-Jun,PAN Guang-Tang*
摘要: microRNA (miRNA)是一类内源性的、19~24碱基长度的小分子非编码RNA,通过碱基互补调控靶基因的表达,在多细胞生物的基因表达调控过程中扮演着十分重要的角色。植物中的miRNAs具有高度的保守性,这为通过同源比对发现保守的miRNAs提供了思路和途径。本研究通过对拟南芥、水稻等植物已知的miRNAs与玉米EST和GSS数据库的比对,并设置一系列严格的筛选标准,共筛选到23条新的玉米miRNAs;利用WMD 3在线植物miRNAs靶基因预测软件,对新发现的玉米miRNAs进行靶基因预测,总共预测到89个靶基因,进一步功能分析发现这些靶基因参与玉米的生长发育、信号转导、转录调节、新陈代谢及逆境胁迫响应等调控过程。
[1]Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297 [2]Jin L-G(金龙国), Wang C(王川), Liu J-Y(刘进元). Plant micro RNA. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 2006, 22(8): 609-614 (in Chinese with English abstract) [3]Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants [J].Annu Rev Plant Biol [4]Zhang B, Pan X, Cannon C H, Cobb G P, Anderson T A. Conservation and divergence of plant microRNA genes [J].Plant J [5]Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe D C. Cloning and characterization of microRNAs from moss [J].Plant J [6]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis [J].Plant Cell [7]Sunkar R, Girke T, Jain P K, Zhu J K. Cloning and characterization of microRNAs from rice [J].Plant Cell [8]Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J. miRBase: microRNA sequences, targets and gene nomenclature [J].Nucl Acids Res [9]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843-854 [10]Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher R L, Moulton V, Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening [J].Genome Res [11]Qiu D Y, Pan X P, Wilson W I, Li F, Liu M, Teng W, Zhang B. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 2009, 436: 37-44 [12]Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA [J].Mol Cell [13]Bonnet E, Wuyts J, Rouzé P, Van de Peer Y. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important targets [J].Proc Natl Acad Sci USA [14]Zhang B H, Pan X P, Wang Q L, Cobb G P, Anderson T A. Identification and characterization of new plant microRNAs using EST analysis [J].Cell Res [15]Llave C, Xie Z, Kasschau K D, Carrington J C. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002, 297: 2053-2056 [16]Ye M(叶茂), Chen Y-L(陈跃磊), Ming Z-H(明镇寰). Progress in the research of miRNAs (microRNAs) family. Prog Biochem Biophys (生物化学与生物物理进展), 2003, 30(3): 370-374 (in Chinese with English abstract) [17]Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs [J].Plant J [18]Ambros V. A uniform system for microRNA annotation. RNA, 2003, 9: 277-279 [19]Zhang Q(张旗), He X-J(何湘君), Pan X-Y(潘秀英). Real-time quantification of microRNAs by RNA-tailing and primer- extension RT-PCR. J Peking Univ (Health Sci), 2007, 39(1): 87-91 [20]Hu X-L(胡晓丽), Li D-Q(李德全). Protein phosphatase 2C in plants and its functions of signal transduction. Plant Physiol Commun (植物生理学通讯), 2007, 43(3): 407-410 (in Chinese with English abstract) [21]Hu X-B(胡学博), Song F-M(宋凤鸣), Zheng Z(郑重). The structure and function of protein phosphatase 2Cs in higher plants. Chin J Cell Biol (细胞生物学杂志), 2005, 27(): 29-34 (in Chinese with English abstract) [22]Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling [J].Trends Plant Sci [23]Demarco A, Roubelakis-Angelakis K A. Laccase activity could contribute to cell wall reconstitution of regenerating protoplasts [J].Phytochemistry [24]Li L, Steffen S J C. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 2002, 215: 239-247 [25]Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. Transparent TESTA 10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in arabidopsis seed coat [J].Plant Cell [26]Wang G-D(王国栋), Chen X-Y(陈晓亚). The properties, functions, catalytic mechanism and applicability of laccase. Chin Bull Bat (植物学通报), 2003, 20(4): 469-475 (in Chinese with English abstract) [27]Zhang L F, Chia J, Kumari S, Stein J C, Liu Z J, Narechania A, Maher C A, Guill K, McMullen M D, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet, 2009, 5(11): e1000716 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[12] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[13] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
|