欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1342-1354.doi: 10.3724/SP.J.1006.2010.01342

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻不同生育期类型品种精确定量施氮参数的初步研究

殷春渊,张洪程*,张庆,魏海燕,戴其根,霍中洋,许轲,马群,李敏,李国业   

  1. 扬州大学农业部长江流域稻作技术创新中心 / 江苏省作物遗传生理重点实验室,江苏扬州 225009
  • 收稿日期:2009-11-30 修回日期:2010-04-20 出版日期:2010-08-12 网络出版日期:2010-06-11
  • 基金资助:
    本研究由国家自然科学基金项目(30971732), 国家“十一五”科技支撑重大项目(2006BAD02A03)和江苏省农业科技攻关项目(SBE200930576)资助。

Preliminary Study on Parameters of Precise and Quantitative Nitrogen Application in Rice Varieties with Different Growth Period Durations

 YAN Chun-Yuan,ZHANG Hong-Cheng,ZHANG Qing,WEI Hai-Yan,DAI Qi-Gen,HE Zhong-Yang,XU Ke,MA Qun,LI Min,LI Guo-Ye   

  1. Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture, Yangzhou University / Key Laboratory of Crop Genetic and Physiology of Jiangsu Province, Yangzhou 225009, China
  • Received:2009-11-30 Revised:2010-04-20 Published:2010-08-12 Published online:2010-06-11

摘要: 以长江中下游地区早熟中粳、中熟中粳、迟熟中粳、早熟晚粳和中熟晚粳5种类型品种为材料,设置3种施氮水平(0、225和300 kg hm-2纯氮),研究精确定量施氮3参数的变化规律。结果表明:(1)不施氮条件下的土壤基础供氮量即基础产量吸氮量,随水稻品种生育期的延长而增加,计算基础产量吸氮量的参数即100 kg稻谷吸氮量,在中熟中粳、迟熟中粳和早熟晚粳3类型间差异较小,产量为6 t hm-2 (4.87~6.58)时为1.58 kg (1.50~1.63)。(2)施氮条件下,100 kg籽粒吸氮量在中熟中粳、迟熟中粳和早熟晚粳间的变化较稳定,平均为7.5 t hm-2产量时,225 kg hm-2氮素水平为1.86 kg (1.85~1.87),300 kg hm-2氮素水平为2.01 kg (1.98~2.05);9 t hm-2的产量时,225 kg hm-2氮素水平为1.94 kg (1.91~2.04),300 kg hm-2氮素水平为2.08 kg (2.01~2.19);10.5 t hm-2的产量时,225 kg hm-2氮素水平为1.95 kg (1.93~2.01),300 kg hm-2氮素水平为2.09 kg (2.08~2.10)。说明随着施氮量的增加100 kg籽粒吸氮量呈增加趋势。相关分析表明,100 kg籽粒吸氮量与产量呈极显著的二次曲线关系,其中早熟中粳和中熟晚粳的相关系数小于其他3种类型。(3)氮肥利用率随施氮量的增加基本呈下降趋势,除中熟晚粳外表现为随生育期的延长而增加,即在225 kg hm-2氮素水平下分别为31.32%、37.64%、38.5%、41.08%和38.11%,300 kg hm-2氮素水平下分别为28.74%、36.13%、37.16%、40.15%和39.42%。(4)欠适宜种植的早熟中粳和中熟晚粳的施氮参数相对于其他类型变异较大;相对于非主推品种,主推品种(当家品种)的施氮参数值较高且更趋稳定。说明在合理的品种选择和布局条件下,施氮参数变化规律较强,生产上利用斯坦福方程精确计算水稻目标产量施氮量是可行的。

关键词: 水稻, 不同生育期类型, 施氮量, 精确定量施氮, 100kg籽粒吸氮量

Abstract: The objective of this study was to expose the change law of the three parameters of the precise and quantitative N application based on the Stanford equation in different growth types of rice. Three levels of N fertilizer application rates of 0, 225, and 300 kg ha−1 N were designed in a field experiment with early (125–135 d), medium (136–145 d), late-maturing (146–155 d) medium japonica and early (156–165 d), medium-maturing (166–175 d) late japonica rice in 2007 and 2008 on the farm of Yangzhou university, Jiangsu province, China. The results were as follows: (1) Under zero N application, soil basal N application (N accumulation for basal yield) increased with the extension of the rice growth duration, in which the parameter of calculating N accumulation for basal yield was the N requirement for 100 kg grains. There were only small differences in N requirement for 100 kg grains between medium, late-maturing medium japonica and early-maturing late japonica rice. For an average yield of 6 t ha−1 (4.87–6.58), the N requirement for 100 kg basal yield was 1.58 kg (1.50–1.63). (2) Under N application, the N requirements for 100 kg grains were rather stable in medium,late-maturing medium Japonica and early-maturing late Japonica rice. With the average yield of 7.5 t ha−1, N requirement for 100 kg grains was 1.86 kg (1.85–1.87) under 225 kg ha−1 N level and 2.01 kg (1.98–2.05) under 300 kg ha−1 N level, respectively. With the average yield of 9 t ha−1, N requirement for 100 kg grains was 1.94 kg (1.91–2.04) under 225 kg ha−1 N level and 2.08 kg (2.01–2.19) under 300 kg ha−1 N level, respectively. With the average yield of 10.5 t ha−1, N requirement for 100 kg grains was 1.95 kg (1.93–2.01)under 225 kg ha−1 N level and 2.09 kg (2.08–2.10) under 300 kg ha−1 N level, respectively. These results suggested that N requirement for 100 kg grains increased with the rising of N application rates. Correlation analysis showed that there existed highly significantly positive conic correlation between yield and N requirement for 100 kg grains, and the correlation coefficients for early-maturing medium japonica and medium-maturing late Japonica were less than those for the other three types. (3)The N use efficiency decreased with the increase of N application rate, and increased with the extension of the growth duration except in the medium-maturing late japonica. N use efficiency was 31.32%, 37.64%, 38.5%, 41.08%, and 38.11% under 225 kg ha−1 N level , and 28.74%, 36.13%, 37.16%, 40.15%, and 39.42% under 300 kg ha−1 N level, for the five types of rice with extended growth duration respectively. (4) The parameters of N application displayed larger differences in early-maturing medium japonica and medium-maturing late japonica rice which were less suitable for local cultivation, compared with the other three types, while these parameters values of the prevailing varieties (headed varieties) were higher and more stable than those of common varieties. These results demonstrated that the changes of the parameters of N application were much larger, it is feasible for the N quantity required for target yield to be calculated accurately by using Stanford equation under the condition of reasonable variety selection and planting location.

Key words: Rice, Different growth type, N application rate, Precise and quantitative N application, N requirement for 100 kg grains

   [1]    Ling Q-H(凌启鸿). Theory and Practice of Quality of Rice Population (水稻群体质量理论与实践). Beijing: China Agriculture Press, 1995. pp 135–142 (in Chinese)   
[2]    Peng S-B(彭少兵), Huang J-L(黄见良), Zhong X-H(钟旭华), Yang J-C(杨建昌), Wang G-H(王光火), Zou Y-B(邹应斌), Zhang F-S(张福锁), Zhu Q-S(朱庆森), Roland B, Christian W. Research strategy in proving N-fertilizer use efficiency of irrigation rice in China. Sci Agric Sin (中国农业科学), 2002, 35(9): 1095–1103 (in Chinese with English abstract)   
[3]    Li J-M(李菊梅), Xu M-G(徐明岗), Qin D-Z(秦道珠), Li D-C(李冬初), Yasukazu H(宝川靖和), Kazuyuki Y(八木一行). Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(1): 51–56(in Chinese with English abstract)   
[4]    Song Y-S(宋勇生), Fan X-H(范晓晖). Summary of research on ammonia volatilization in paddy soil. Ecol Environ (生态环境), 2003, 12(2): 240–244(in Chinese with English abstract)   
[5]    Zhang F-S(张福锁), Ma W-Q(马文奇), Jiang R-F(江荣风). Integrate Management of Nutrition Resource (养分资源综合管理). Beijing: China Agriculture Press, 2003 (in Chinese)   
[6]    Cui Y-T(崔玉亭), Cheng X(程序), Han C-R(韩纯儒), Li R-G(李荣刚). The economic and ecological satisfactory amount of nitrogen fertilizer using on rice in Tai Lake Watwershed. Acta Ecol Sin (生态学报), 2000, 20(4): 559–662 (in Chinese with English abstract)   
[7]    Li Q-K(李庆逵). Fertilizer Issues in the Sustainable Development of China Agriculture (中国农业持续发展中的肥料问题). Jiangxi: Jiangxi Science and Technology Press, 1997 (in Chinese)   
[8]    Kumar K, Goh K M. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield and nitrogen recovery. Adv Agron, 1999, 68: 197–319   
[9]    Leep R H, Jeranyama P, Warncke D. Pennington D. The effect of variability in soil pH and available potassium on growth of alfalfa in Michigan fields. In: Proceedings of the Fifth International Conference on Precision Agriculture, Madsion, Wisconsin, ASA, CSSSA, SSSA, 2000. pp 7–12
[10]    Richard M J, Robert G D, Judith M B, Philip J B, Sadler E J. Variability in cotton fiber yield, fiber quality, and soil properties in a southeastern coastal plain. Agron J, 2002, 94: 1305–1316
[11]    Yang L-J(杨立炯), Wang J-X(王嘉训), Huang X-X(黄祥熙). Initial analysis of Chen Yong-kang “three wicked three yellow” fertile cultivation technique of late-ripening late round-shaped paddy (陈永康晚稻“三黑三黄”高产栽培技术的初步分析). In: Branch of Jiangsu of Chinese Academy of Agricultural Sciences. Chen Yong kang Rice’s Fertile Experience Studying (First Part)
[陈永康水稻高产经验研究(第一集)]. Shanghai: Shanghai Scientific and Technical Publishers, 1964. pp 9–29 (in Chinese)
[12]    Wang S-H(王绍华), Cao W-X(曹卫星), Wang Q-S(王强盛), Ding Y-F(丁艳锋), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Positional distribution of leaf color and diagnosis of nitrogen nutrition in rice plant. Sci Agric Sin (中国农业科学), 2002, 35(12): 1461–1466 (in Chinese with English abstract)
[13]    Hussain F, Bronson K F, Yadvinder S, Bijay S, Peng S B. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron J, 2000, 92: 875–879
[14]    Wang G H, Dobermann A, Witt C, Sun Q Z, Fu R X. Performance of site-specific nutrient management for irrigated rice in southeast china. Agron J, 2001, 93: 869–898
[15]    Ling Q-H(凌启鸿), Zhang H-C(张洪程), Cai J-Z(蔡建中), Su Z-F(苏祖芳), Ling L(凌励). Investigation on the population quality of high yield and its optimizing control program in rice. Sci Agric Sin (中国农业科学), 1993, 26(6): 1–11 (in Chinese with English abstract)
[16]    Ling Q-H(凌启鸿). Achievement and prospect of Chinese crop(作物杂志), 2003, 26(1): 1–7 (in Chinese) cultivation science. Crops
[17]    Ling Q-H(凌启鸿), Zhang H-C(张洪程), Dai Q-G(戴其根), Ding Y-F(丁艳锋), Ling L(凌励), Su Z-F(苏祖芳), Xu M(徐茂), Que J-H(阙金华), Wang S-H(王绍华). Study on precise and quantitative N application in rice. Sci Agric Sin (中国农业科学), 2005, 38(12): 2457–2467 (in Chinese with English abstract)
[18]    Lu R-K(鲁如坤). Principal of Soil-plant Nutrition and Fertilization (土壤植物营养原理和施肥). Beijing: Chemical Industrial Press, 1998 (in Chinese)
[19]    De Datta S K, Broedbent F E. Nitrogen-use efficiency of 24 rice genotypes on N-deficient soil. Field Crops Res, 1990, 23: 81–92
[20]    Piao Z-Z(朴钟泽), Han L-Z(韩龙植), Gao X-Z(高熙宗). Variations of nitrogen use efficiency by rice genotype. Chin J Rice Sci (中国水稻科学), 2003, 17(3): 233–238 (in Chinese with English abstract)
[21]    Piao Z-Z(朴钟泽), Han L-Z(韩龙植), Gao X-Z(高熙宗), Zhang J-M(张建明), Lu J-A(陆家安), Li P-D(李培德). Analysis on combining ability of dry weight and nitrogen use-efficiency in rice. Chin J Rice Sci (中国水稻科学), 2005, 19(6): 527–532 (in Chinese with English abstract)
[22]    Wei H-Y(魏海燕), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Hang J(杭杰), Ma Q(马群), Zhang S-F(张胜飞), Zhang Q(张庆), Zhang J(张军). Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin (作物学报), 2008, 34(1): 119–125 (in Chinese with English abstract)
[23]    Bao S-D(鲍士旦). Agricultural Chemistry Analysis in Soil (土壤农化分析), 3rd edn. Beijing: China Agriculture Press, 2000. pp 44–49 (in Chinese)
[24]    Ling Q-H(凌启鸿), Zhang H-C(张洪程), Ding Y-F(丁艳锋), Zhang Y-B(张益彬). New developments of high-yielding rice technology-precise quantitative cultivation. China Rice (中国稻米), 2005, (1): 3–7 (in Chinese)
[25]    Zhu Z-L(朱兆良). The forecast of the validity indicators of soil nitrogen and soil nitrogen applied. Soil (土壤), 1990, (4): 177–180 (in Chinese)
[26]    Xu Z-J(徐宗进), Liu Q(刘强), Duan X-M(段祥茂), Dai Q-G(戴其根), Que J-H(阙金华), Gao D-Y(高德友), Yu S-X(于松溪), Xu K(许轲), Huo Z-Y(霍中洋). Study on the technology of precise and quantitative N application in rice. Gengzui yu Zaipei (耕作与栽培), 2003, (2): 53–54 (in Chinese)
[27]    Xu M(徐茂), Wu H(吴昊), Wang S-H(王绍华), Li G-H(李刚华), Yang W-X(杨文祥),Wang Q-S(王强盛), Ding Y-F(丁艳锋), Shen Q-R(沈其荣).  Effects of basic nitrogen supply capacity of different texture soils on rice yield in Jiangsu province. J Nanjing Agric Univ (南京农业大学学报), 2006, 29(4): 1–5 (in Chinese with English abstract)
[28]    Gao H(高辉), Zhang H-C(张洪程), Dai Q-G(戴其根), Feng J-G(冯加根), Yan G-Z(严桂珠), Zhu D-J(朱德进).  Relations between soil nitrogen and other nutrients and rice basal yields in different soil local types. J Yangzhou Univ (Agric & Life Sci Edn)(扬州大学学报·农业与生命科学版), 2007, 28(1): 49–53 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!