作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1440-1449.doi: 10.3724/SP.J.1006.2010.01440
万小荣1,莫爱琼2,郭小建1,杨妙贤1,余土元1,曹锦萍1
WAN Xiao-Rong1,MO Ai-Qiong2,GUO Xiao-Jian1,YANG Miao-Xian1,YU Shi-Yuan1,CAO Jin-Ping1
摘要: AhNCED1是干旱胁迫下调控花生ABA生物合成的关键基因。以pCABIA1301为基本双元表达载体,分别构建CaMV 35S启动子和拟南芥AtNCED3基因启动子(AtNCED3p)驱动花生AhNCED1基因的两个植物双元表达载体p35S::ORF和pAtNCED3p::ORF,通过根癌农杆菌介导法将上述两个表达载体分别转化野生型和129B08/nced3突变体拟南芥,经潮霉素筛选和PCR鉴定分别获得35S::ORF-WT和A3p::ORF-B08转基因植株,RT-PCR证实花生AhNCED1基因已在转基因植株中稳定表达,并对野生型、129B08/nced3突变体和转基因拟南芥进行外源ABA敏感性和耐渗透胁迫能力分析。结果表明,129B08/nced3突变体对外源ABA的敏感性下降,而花生AhNCED1基因在拟南芥中的异位表达提高了对外源ABA的敏感性。在山梨醇胁迫下,129B08/nced3突变体种子的相对萌发率明显低于野生型的,而A3p::ORF-B08转基因拟南芥种子的相对萌发率与野生型的相当,显著高于129B08/nced3突变体的,且300 mmol L–1山梨醇胁迫下,35S::ORF-WT转基因拟南芥种子的相对萌发率明显高于野生型的。在300 mmol L–1山梨醇胁迫下,129B08/nced3突变体幼苗叶片高度黄化,根的形成和幼苗生长受到严重抑制,而A3p::ORF-B08转基因突变体与野生型相似,叶片仅轻度黄化,幼苗生长势良好;35S::ORF-WT转基因植株幼苗生长未受明显影响。这些结果说明,拟南芥129B08/nced3突变体对山梨醇诱导的非离子渗透胁迫有超敏性,异位表达花生AhNCED1基因能恢复该突变体对山梨醇的超敏性,提高拟南芥的耐渗透胁迫能力。
[1] Wan X R, Li L. Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9-cis-epoxycarotenoid dioxygenase in Arachis hypogaea L. DNA Seq, 2005, 16: 217-223 [2] Yan M-L(严美玲), Li X-D(李向东), Jiao Y-L(矫岩林), Wang L-L(王丽丽). Identification of drought resistance in different peanut varieties. J Peanut Sci (花生学报), 2004, 33(1): 8-12 (in Chinese with English abstract) [3] Zeevaart J A D. Abscisic Acid Metabolism and Its Regulation. In: Hooykaas P J J, Hall M A, Libbenga K R, eds. Biochemistry and Molecular Biology of Plant Hormones. Amsterdam: Elsevier Science, 1999. pp 189-207 [4] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165-185 [5] Taylor I B, Sonneveld T, Bugg T D H, Thompson A J. Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. J Plant Growth Regul, 2005, 24: 253-273 [6] Kende H, Zeevaart J A D. The five classical plant hormones. Plant Cell, 1997, 9: 1197-1210 [7] Koornneef M, Leon-Kloosterziel K M, Schwartz S H, Zeevaart J A D. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem, 1998, 36: 83-89 [8] Tan B C, Schwartz S H, Zeevaart J A D, McCarty D R. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 94: 12235-12240 [9] Burbidge A, Grieve T, Jackson A, Thompson A, Taylor I B. Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. J Exp Bot, 1997, 47: 2111-2112 [10] Qin X, Zeevaart J A D. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA, 1999, 96: 15354-15361 [11] Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol, 2000, 123: 553-562 [12] Chernys J T, Zeevaart J A D. Characterization of the 9-cis epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol, 2000, 124: 343-353 [13] Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001,27: 325-333 [14] Soar C J, Speirs J, Maffei S M, Loveys B R. Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis vinifera cv Shiraz: biochemical and molecular biological evidence indicating their source. Funct Plant Biol, 2004, 31: 659-669 [15] Rodrigo M J, Alquezar B, Zacar?′as L. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot, 2006, 57: 633-643 [16] Destefano-Beltran L, Knauber D, Huckle L, Suttle J C. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Mol Biol, 2006, 61: 687-697 [17] Yang J, Guo Z. Cloning of a 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) from Stylosanthes guianensis and its expression in response to abiotic stresses. Plant Cell Rep, 2007, 26: 1383-1390 [18] Zhu C, Kauder F, Romer S, Sandmann G. Cloning of two individual cDNAs encoding 9-cis-epoxycarotenoid dioxygenase from Gentiana lutea, their tissue-specific expression and physiological effect in transgenic tobacco. J Plant Physiol, 2007, 164: 195-204 [19] Kraft M, Kuglitsch R, Kwiatkowski J, Frank M, Grossmann K. Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene. J Exp Bot, 2007, 58: 1497-1503 [20] Qin X, Yang S H, Kepsel A C, Schwartz S H, Zeevaart J A D. Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin. Plant Physiol, 2008, 147: 816-822 [21] Munné-Bosch S, Falara V, Pateraki I, López-Carbonell M, Cela J, Kanellis A K. Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol, 2009, 166: 136-145 [22] Leng P(冷平), Zhang G-L(张光连), Li X-X(李祥欣), Wang L-H(王良合), Zheng Z-M(郑仲明). Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ethylene production regulated by ABA in detached young persimmon calyx. Chin Sci Bull (科学通报), 2009, 54: 2082-2088 (in Chinese) [23] Wan X R, Li L. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem Biophys Res Commun, 2006, 347: 1030-1038 [24] Tan B C, Joseph L M, Deng W T, Liu L, Li Q B, Cline K, McCarty D R. Molecular characterization of the Arabidopsis 9-cis-epoxycarotenoid dioxygenase gene family. Plant J, 2003, 35: 44-56 [25] Hwang S G, Chen H C, Huang W Y, Chu Y C, Shii C T, Cheng W H. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci, 2010, 178: 12-22 [26] Rosso M G, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABIKat) for flanking sequence tag-based reverse genetics. Plant Mol Biol, 2003, 53: 247-259 [27] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743 [28] Unfried I, Stocker U, Gruendler P. Nucleotide sequence of the 18S rRNA gene from Arabidopsis thaliana (Co1-0), Nucl Acids Res, 1989, 17: 7513 [29] Thompson A J, Jackson A C, Parker R A, Morpeth D R, Burbidge A, Taylor I B. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J, 2000, 23: 363-374 [30] Qin X, Zeevaart J A D. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol, 2002, 128: 544-551 [31] Zhang Y, Yang J, Lu S, Cai J, Guo Z.Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul, 2008, 27: 151-158 [32] Zhang Y, Tan J, Guo Z, Lu S, He S, Shu W, Zhou B. Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ, 2009, 32: 509-519 [33] Ruggiero B, Koiwa H, Manabe Y, Quist T M, Inan G, Saccardo F, Joly R J, Hasegawa P M, Bressan R A, Maggio A. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol, 2004, 136: 3134-3147 |
[1] | 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016. |
[2] | 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169. |
[3] | 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573. |
[4] | 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578. |
[5] | 葛淑娟,孙爱清,刘鹏,张杰道,董树亭. 玉米响应渗透胁迫的数字基因表达谱分析[J]. 作物学报, 2014, 40(07): 1164-1173. |
[6] | 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351. |
[7] | 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569. |
[8] | 丁在松, 王春艳, 关东明, 赵凤悟, 赵明. 旱稻×稗草杂交后代YF2-1光合作用气体交换、叶绿素荧光和抗氧化酶系统对渗透胁迫的响应[J]. 作物学报, 2011, 37(05): 876-881. |
[9] | 汪耀富;杨天旭;刘国顺;赵春华;王佩;陈新建. 渗透胁迫下烟草叶片基因的差异表达研究[J]. 作物学报, 2007, 33(06): 914-920. |
[10] | 刘怀攀;纪秀娥;史留功;李潮海. 渗透胁迫对玉米幼苗叶片不同形态多胺含量的影响[J]. 作物学报, 2006, 32(10): 1430-1436. |
[11] | 段辉国;袁澍;黄作喜;孙歆;卿东红;董凌;林宏辉. 亚精胺预处理对渗透胁迫下小麦幼苗抗氧化能力的影响[J]. 作物学报, 2006, 32(07): 1057-1062. |
[12] | 孙立平;何宝坤;吴学友;刘丽霞;李德全. 渗透胁迫下ABA及Ca2+/CaM信使系统对玉米幼苗根系63.5 kD热稳定蛋白的调控作用[J]. 作物学报, 2005, 31(01): 83-87. |
[13] | 刘春玲;陈慧萍;刘娥娥;彭新湘;卢少云;郭振飞. 水稻品种对几种逆境的多重耐性及与ABA的关系[J]. 作物学报, 2003, 29(05): 725-729. |
[14] | 王玮, 张枫, 李德全. 外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响[J]. 作物学报, 2002, 28(01): 121-126. |
[15] | 梁宗锁;康绍忠;高俊风;张建华. 分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J]. 作物学报, 2000, 26(02): 250-256. |
|