欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1440-1449.doi: 10.3724/SP.J.1006.2010.01440

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

含异位表达花生AhNCED1基因的拟南芥提高耐渗透胁迫能力

万小荣1,莫爱琼2,郭小建1,杨妙贤1,余土元1,曹锦萍1   

  1. 1 仲恺农业工程学院生命科学学院,广东广州 510225;2 仲恺农业工程学院教学科研基地,广东广州 510225
  • 收稿日期:2010-03-10 修回日期:2010-04-23 出版日期:2010-09-12 网络出版日期:2010-07-05
  • 基金资助:

    本研究由国家自然科学基金项目(30800077)资助。

Osmotic Stress Tolerance Improvement of Arabidopsis Plants Ectopically Expressing Peanut AhNCED1 Gene

WAN Xiao-Rong1,MO Ai-Qiong2,GUO Xiao-Jian1,YANG Miao-Xian1,YU Shi-Yuan1,CAO Jin-Ping1   

  1. 1 College of Life Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; 2 Teaching and Researching Base, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
  • Received:2010-03-10 Revised:2010-04-23 Published:2010-09-12 Published online:2010-07-05

摘要: AhNCED1是干旱胁迫下调控花生ABA生物合成的关键基因。以pCABIA1301为基本双元表达载体,分别构建CaMV 35S启动子和拟南芥AtNCED3基因启动子(AtNCED3p)驱动花生AhNCED1基因的两个植物双元表达载体p35S::ORF和pAtNCED3p::ORF,通过根癌农杆菌介导法将上述两个表达载体分别转化野生型和129B08/nced3突变体拟南芥,经潮霉素筛选和PCR鉴定分别获得35S::ORF-WT和A3p::ORF-B08转基因植株,RT-PCR证实花生AhNCED1基因已在转基因植株中稳定表达,并对野生型、129B08/nced3突变体和转基因拟南芥进行外源ABA敏感性和耐渗透胁迫能力分析。结果表明,129B08/nced3突变体对外源ABA的敏感性下降,而花生AhNCED1基因在拟南芥中的异位表达提高了对外源ABA的敏感性。在山梨醇胁迫下,129B08/nced3突变体种子的相对萌发率明显低于野生型的,而A3p::ORF-B08转基因拟南芥种子的相对萌发率与野生型的相当,显著高于129B08/nced3突变体的,且300 mmol L–1山梨醇胁迫下,35S::ORF-WT转基因拟南芥种子的相对萌发率明显高于野生型的。在300 mmol L–1山梨醇胁迫下,129B08/nced3突变体幼苗叶片高度黄化,根的形成和幼苗生长受到严重抑制,而A3p::ORF-B08转基因突变体与野生型相似,叶片仅轻度黄化,幼苗生长势良好;35S::ORF-WT转基因植株幼苗生长未受明显影响。这些结果说明,拟南芥129B08/nced3突变体对山梨醇诱导的非离子渗透胁迫有超敏性,异位表达花生AhNCED1基因能恢复该突变体对山梨醇的超敏性,提高拟南芥的耐渗透胁迫能力。

关键词: AhNCED1基因, 异位表达, 转基因拟南芥, 渗透胁迫, ABA敏感性

Abstract: The phytohormone abscisic acid (ABA) is a key regulator of seed development, root growth, stomatal aperture in higher plants and it is also involved in adaptation of plants to various stresses. The oxidative cleavage of cis-epoxycarotenoids catalyzed by nine-cis-epoxycarotenoid dioxygenase (NCED) is considered to be the rate-limiting step in ABA biosynthesis in higher plants. The AhNCED1 gene plays a vital role in the regulation of ABA biosynthesis in peanut plants in response to drought stress. Two binary vectors, p35S::ORF and pAtNCED3p::ORF, were established which harbored the AhNCED1 gene, respectively, driven by the CaMV 35S promoter originated from pCAMBIA1301 and the AtNCED3 gene promoter from wild type Arabidopsis. Wild type and 129B08/nced3 mutant Arabidopsis plants were separately transformed with Agrobacterium harboring p35S::ORF or pAtNCED3p::ORF vectors, generating 35S::ORF-WT and A3p::ORF-B08 transgenic plants, respectively, after hygromycin screening and PCR detection. The stable expression of AhNCED1 gene in Arabidopsis plants was confirmed by duplex RT-PCR performance. Wild type, 129B08/nced3 mutant and transgenic Arabidopsis plants were subsequently tested for sensitivity to exogenous ABA and tolerance to osmotic stress. The results showed that the ABA sensitivity of 129B08/nced3 mutant declined, and that of Arabidopsis plants ectopically expressing the AhNCED1 gene increased. Under sorbitol stress, the relative germination rate of 129B08/nced3 mutant seeds was far lower than that of wild type seeds; however, the relative germination rate of A3p::ORF-B08 transgenic seeds was close to that of wild type seeds, significantly higher than that of 129B08/nced3 mutant seeds. The relative germination rate of 35S::ORF-WT transgenic seeds was higher than that of wild type seeds at the treatment of 300 mmol L–1 sorbitol. Under 300 mmol L–1 sorbitol stress, leaf of 129B08/nced3 mutant plants was highly chlorotic, and root formation and seedling growth were severely inhibited. In contrast, at this concentration of sorbitol, leaf of A3p::ORF-B08 transgenic seedlings was only slightly chlorotic, just similar to those of wild-type plants; the growth of 35S::ORF-WT transgenic seedlings was nearly not affected. Germination assay and phenotypic evaluation revealed that 129B08/nced3 mutant was hypersensitive to the nonionic osmotic stress induced by sorbitol, and that ectopic expression of peanut AhNCED1 gene reverted the hypersensitivity of 129B08/nced3 mutant Arabidopsis to sorbitol and conferred enhanced osmotic stress tolerance of transgenic Arabidopsis plants. These observations and an improved understanding of the roles of AhNCED1 gene in stresses adaptation could provide the basis for engineering greater stress tolerance in crops.

Key words: AhNCED1 gene, Ectopic expression, Transgenic Arabidopsis, Osmotic stress, ABA sensitivity

[1] Wan X R, Li L. Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9-cis-epoxycarotenoid dioxygenase in Arachis hypogaea L. DNA Seq, 2005, 16: 217-223
[2] Yan M-L(严美玲), Li X-D(李向东), Jiao Y-L(矫岩林), Wang L-L(王丽丽). Identification of drought resistance in different peanut varieties. J Peanut Sci (花生学报), 2004, 33(1): 8-12 (in Chinese with English abstract)
[3] Zeevaart J A D. Abscisic Acid Metabolism and Its Regulation. In: Hooykaas P J J, Hall M A, Libbenga K R, eds. Biochemistry and Molecular Biology of Plant Hormones. Amsterdam: Elsevier Science, 1999. pp 189-207
[4] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165-185
[5] Taylor I B, Sonneveld T, Bugg T D H, Thompson A J. Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. J Plant Growth Regul, 2005, 24: 253-273
[6] Kende H, Zeevaart J A D. The five classical plant hormones. Plant Cell, 1997, 9: 1197-1210
[7] Koornneef M, Leon-Kloosterziel K M, Schwartz S H, Zeevaart J A D. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem, 1998, 36: 83-89
[8] Tan B C, Schwartz S H, Zeevaart J A D, McCarty D R. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 94: 12235-12240
[9] Burbidge A, Grieve T, Jackson A, Thompson A, Taylor I B. Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. J Exp Bot, 1997, 47: 2111-2112
[10] Qin X, Zeevaart J A D. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA, 1999, 96: 15354-15361
[11] Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol, 2000, 123: 553-562
[12] Chernys J T, Zeevaart J A D. Characterization of the 9-cis epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol, 2000, 124: 343-353
[13] Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001,27: 325-333
[14] Soar C J, Speirs J, Maffei S M, Loveys B R. Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis vinifera cv Shiraz: biochemical and molecular biological evidence indicating their source. Funct Plant Biol, 2004, 31: 659-669
[15] Rodrigo M J, Alquezar B, Zacar?′as L. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot, 2006, 57: 633-643
[16] Destefano-Beltran L, Knauber D, Huckle L, Suttle J C. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Mol Biol, 2006, 61: 687-697
[17] Yang J, Guo Z. Cloning of a 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) from Stylosanthes guianensis and its expression in response to abiotic stresses. Plant Cell Rep, 2007, 26: 1383-1390
[18] Zhu C, Kauder F, Romer S, Sandmann G. Cloning of two individual cDNAs encoding 9-cis-epoxycarotenoid dioxygenase from Gentiana lutea, their tissue-specific expression and physiological effect in transgenic tobacco. J Plant Physiol, 2007, 164: 195-204
[19] Kraft M, Kuglitsch R, Kwiatkowski J, Frank M, Grossmann K. Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene. J Exp Bot, 2007, 58: 1497-1503
[20] Qin X, Yang S H, Kepsel A C, Schwartz S H, Zeevaart J A D. Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin. Plant Physiol, 2008, 147: 816-822
[21] Munné-Bosch S, Falara V, Pateraki I, López-Carbonell M, Cela J, Kanellis A K. Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol, 2009, 166: 136-145
[22] Leng P(冷平), Zhang G-L(张光连), Li X-X(李祥欣), Wang L-H(王良合), Zheng Z-M(郑仲明). Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ethylene production regulated by ABA in detached young persimmon calyx. Chin Sci Bull (科学通报), 2009, 54: 2082-2088 (in Chinese)
[23] Wan X R, Li L. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem Biophys Res Commun, 2006, 347: 1030-1038
[24] Tan B C, Joseph L M, Deng W T, Liu L, Li Q B, Cline K, McCarty D R. Molecular characterization of the Arabidopsis 9-cis-epoxycarotenoid dioxygenase gene family. Plant J, 2003, 35: 44-56
[25] Hwang S G, Chen H C, Huang W Y, Chu Y C, Shii C T, Cheng W H. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci, 2010, 178: 12-22
[26] Rosso M G, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABIKat) for flanking sequence tag-based reverse genetics. Plant Mol Biol, 2003, 53: 247-259
[27] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743
[28] Unfried I, Stocker U, Gruendler P. Nucleotide sequence of the 18S rRNA gene from Arabidopsis thaliana (Co1-0), Nucl Acids Res, 1989, 17: 7513
[29] Thompson A J, Jackson A C, Parker R A, Morpeth D R, Burbidge A, Taylor I B. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J, 2000, 23: 363-374
[30] Qin X, Zeevaart J A D. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol, 2002, 128: 544-551
[31] Zhang Y, Yang J, Lu S, Cai J, Guo Z.Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul, 2008, 27: 151-158
[32] Zhang Y, Tan J, Guo Z, Lu S, He S, Shu W, Zhou B. Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ, 2009, 32: 509-519
[33] Ruggiero B, Koiwa H, Manabe Y, Quist T M, Inan G, Saccardo F, Joly R J, Hasegawa P M, Bressan R A, Maggio A. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol, 2004, 136: 3134-3147
[1] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016.
[2] 李敏,于太飞,徐兆师,张双喜,闵东红,陈明,马有志,柴守诚,郑炜君. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(08): 1161-1169.
[3] 吕艳艳,付三雄,陈松,张维,戚存扣*. 甘蓝型油菜BnADH3基因的克隆及转BnADH3拟南芥的耐淹性[J]. 作物学报, 2015, 41(04): 565-573.
[4] 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578.
[5] 葛淑娟,孙爱清,刘鹏,张杰道,董树亭. 玉米响应渗透胁迫的数字基因表达谱分析[J]. 作物学报, 2014, 40(07): 1164-1173.
[6] 彭学聪,杨秀芬,邱德文,曾洪梅,郭立华,刘峥*. 蛋白激发子Hrip1基因在拟南芥中表达可提高植株的耐盐耐旱能力[J]. 作物学报, 2013, 39(08): 1345-1351.
[7] 张德静,秦丽霞,李龙,饶玥,李学宝,许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性[J]. 作物学报, 2013, 39(03): 563-569.
[8] 丁在松, 王春艳, 关东明, 赵凤悟, 赵明. 旱稻×稗草杂交后代YF2-1光合作用气体交换、叶绿素荧光和抗氧化酶系统对渗透胁迫的响应[J]. 作物学报, 2011, 37(05): 876-881.
[9] 汪耀富;杨天旭;刘国顺;赵春华;王佩;陈新建. 渗透胁迫下烟草叶片基因的差异表达研究[J]. 作物学报, 2007, 33(06): 914-920.
[10] 刘怀攀;纪秀娥;史留功;李潮海. 渗透胁迫对玉米幼苗叶片不同形态多胺含量的影响[J]. 作物学报, 2006, 32(10): 1430-1436.
[11] 段辉国;袁澍;黄作喜;孙歆;卿东红;董凌;林宏辉. 亚精胺预处理对渗透胁迫下小麦幼苗抗氧化能力的影响[J]. 作物学报, 2006, 32(07): 1057-1062.
[12] 孙立平;何宝坤;吴学友;刘丽霞;李德全. 渗透胁迫下ABA及Ca2+/CaM信使系统对玉米幼苗根系63.5 kD热稳定蛋白的调控作用[J]. 作物学报, 2005, 31(01): 83-87.
[13] 刘春玲;陈慧萍;刘娥娥;彭新湘;卢少云;郭振飞. 水稻品种对几种逆境的多重耐性及与ABA的关系[J]. 作物学报, 2003, 29(05): 725-729.
[14] 王玮, 张枫, 李德全. 外源ABA对渗透胁迫下玉米幼苗根系渗透调节的影响[J]. 作物学报, 2002, 28(01): 121-126.
[15] 梁宗锁;康绍忠;高俊风;张建华. 分根交替渗透胁迫与脱落酸对玉米根系生长和蒸腾效率的影响[J]. 作物学报, 2000, 26(02): 250-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!