欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1431-1439.doi: 10.3724/SP.J.1006.2010.01431

• 综述 • 上一篇    下一篇

水稻高产育种中一些问题的讨论

顾铭洪   

  1. 扬州大学农学院 / 植物功能基因组学教育部重点实验室,江苏扬州225009
  • 收稿日期:2010-01-04 修回日期:2010-03-23 出版日期:2010-09-12 网络出版日期:2010-07-12
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101701)资助.

Discussion on the Aspects of High-Yielding Breeding in Rice

GU Ming-Hong   

  1. Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
  • Received:2010-01-04 Revised:2010-03-23 Published:2010-09-12 Published online:2010-07-12

摘要: 进一步提高我国水稻产量,今后主要应依赖于单位面积产量的提高。为此,选育单产潜力更高和改进栽培技术将起到至关重要的作用。本文在总结近几十年来水稻品种改良经验的基础上,从形态、生理和遗传等方面对进一步提高水稻品种产量潜力的可能途径进行了分析。其目的在于推动对水稻高产育种的讨论和研究。解放以后,我国在水稻育种事业上取得了一系列重要的成就。其中最为突出的主要有三: (1) 在利用半矮秆基因sd1的基础上,通过株型改良,于20世纪50年代末到60年代初在南方籼稻矮化育种上取得了突破;(2) 利用引进品种Balilla通过籼粳杂交和复合杂交,育成了株型挺拔的直立穗株型粳稻品种,并在全国粳稻产区大面积推广;(3) 在成功利用细胞质雄性不育基因的基础上,实现杂交水稻三系配套,成功利用了水稻杂种优势。从水稻产量构成因素和几十年来水稻改良的历史分析,进一步提高水稻品种的产量潜力是提高大面积水稻产量的关键之一。为此,在高产品种的选育上,应在继续利用sd1等半矮秆基因控制株高的同时,注意提高茎秆的强度和根系的活力。分蘖对于小株作物的水稻来讲,在调节群体结构和提高水稻稳产性上具重要作用。应对分蘖应给予足够重视。千粒重尽管在产量上起重要作用,但粒重过大,对于品质有明显负面效应,因此高产品种的千粒重宜维持在中等偏上的水平。

关键词: 水稻, 高产育种, 讨论

Abstract: In last 60 years, great success on rice production was achieved via improved cultivation technique, utilization of chemical fertilizer, variety improvement and so on. In the aspect related to development of high-yielding rice varieties, the successes can be summarized as three points: (1) development of semi-dwarf varieties of indica rice with the gene of sd-1 in late 1950s and early 1960s; (2) development of elect-panicle varieties of japonica rice with the gene of qEP9-1 in 1960s; (3) development of hybrid rice with the gene of CMS of WA, BT, HL, etc. in 1970s. Generally speaking, rice yield is composed of three components: the panicle number of unit area, the filled grain number per panicle and the grain size (usually measured by the weight of 1000 rice grains). In order to develop super-high-yielding-variety in rice, the key point is to explore new resources of the genes related to plant type, tillering ability, panicle size, grain size, insect and disease resistance, grain filling ability, and so on. Such gene resources usually can be obtained from different subspecies, i.e. indica and japonica. Some important genes also can be obtained from other species for which biological approach is essential including gene cloning and development of molecular makers for the genes. In recent years, lots of target genes related to the characteristics mentioned above have been cloned, such as Sd1, Gn1a, Ga20x-2, Gs3, Bt, EPSPS, qPEP9-1, On the other side, new breeding techniques such as transgenic approach and molecular assisted selection (MAS) to pyramid target genes (or gene combinations) have need to be accepted and to be joined with conventional breeding techniques. With reviewing the development for high-yielding variety achieved in last century, several points need to be noticed and discussed: (1) Tillering. The tillering ability of rice plays an important role in regulating population density related to the efficiency of photosynthesis . The panicle number of unit area also relates to the tillering ability of the varieties. For high and the stabe yield, medium or even higher than medium tillering ability is necessary for the elite varieties. (2) Panicle size is usually measured by the number of filled grains per panicle. Extensive variation on panicle size can be found in different rice varieties. The heterosis of hybrid rice mainly shows the enlargement of panicle size. For developing high-yielding varieties, more attention needs to be paid on enlarging the panicle size. (3) Grain size: Grain size is one of the most important factors influencing yield potential in rice. The range of grain size measured by 1000-grain weight is 23–29 g in commercial varieties and 15–70 g in rice germplasm. In general, the larger the grain size, the poorer the grain quality. From the point of view of balance between grain yield and grain quality, a medium-large grain size is most favorite for high-yielding varieties.

Key words: Rice, High-yielding breeding, Discussion

[1] Song J(宋健). Address at the International Rice Congress.
[J].Remarks & Opening Keynotes(在国际水稻大会开幕式上的发言.2002,:- 
[2] Ministry of Agriculture of the People’s Republic of China (中华人民共和国农业部). The Report on Agriculture Development in China in 2001 (中国农业发展报告, 2001). Beijing: China Agriculture Press, 2001. p 114 (in Chinese) 
[3] IRRI. IRRI Redesigns Rice Plant to Yield more Grain, IRRI Report, December 1994, 4/94: 1-2 
[4] Yuan L-P(袁隆平). Hybrid rice breeding for super high yield. Hybrid Rice (杂交水稻), 1997, 12(6): 1-6 (in Chinese with English abstract) 
[5] Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Loss of function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to rice “Green Revolution”
[J].Breed Sci 
[6] Spielmeyer W, Ellis M H, Chandier P M. Semidwarf (sd-1), “Green revolution” rice, contains a defective gibberellin 20-oxidase gene
[J].Proc Natl Acad Sci USA 
[7] Asano K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M. Genetic and molecular analysis of utility of sd-1 alleles in rice breeding
[J]. Breed Sci 
[8] IRRI. IRRI Goal: A New Rice Plant Type. The IRRI Report. September, 1991 
[9] Department of Scientific Technology and Qualitical Standard.
[J].the Ministry of Agriculture of The People’s Republic of China (中华人民共和国农业部科学技术与质量标准司). Super Rice Breeding in China (中国超级稻育种.1996,:- 
[10] Yang S-R(杨守仁), Zhang B-L(张步龙), Chen W-F(陈温福), Xu Z-J(徐正进), Wang J-M(王进民). Theories and methods of rice breeding for maximum yield. J Shenyang Agric Univ(沈阳农业大学学报), 1996, 27(1): 1-7 (in Chinese with English abstract) 
[11] Chen W-F(陈温福), Xu Z-J (徐正进), Zhang W-Z (张文忠). Creation of new plant type and breeding rice for super high yield. Acta Agron Sin (作物学报), 2001, 27(5): 665-672 (in Chinese with English abstract) 
[12] Chen J J, Ding J H, Ou-Yang Y D, Du H Y, Yang J, Cheng K, Zhao J, Qiu S Q, Zhang X L, Xue Y B, Xia M, Ji Q, Lu J F, Xu M L, Zhang Q F. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrid in rice
[J].Proc Natl Acad Sci USA 
[13] Tan C-L(谭长乐), Zhang H-X(张洪熙), Xia G-H(夏广宏), Kong X-D(孔祥斗), Dai Z-Y(戴正元), Zhao B-H(赵步宏), Liu X-B(刘晓斌). Characteristics of indica Yangdao 6 yield formation under different N fertilizer rate. Jiangsu Agric Sci (江苏农业科学), 2000, (2): 17-19 (in Chinese with English abstract) 
[14] Tan C-L(谭长乐), Zhang H-X(张洪熙), Zhao B-H(赵步洪), Xu M-L(徐卯林), Liu X-B(刘晓斌), Zhou G-X(周桂香). Characteristics of sink-source and flow in good quality indica rice Yangdao 6. Sci Agric Sin (中国农业科学), 2003, 36(1): 26-30 (in Chinese with English abstract) 
[15] Yang J-C(杨建昌), Zhang W-H(张文虎), Wang Z-Q(王志琴), Liu L-J(刘立军), Zhu Q-S(朱庆森). Source-sink characteristics and the translocation of assimilates in new plant type and japonica/indica hybrid rice. Sci Agric Sin (中国农业科学), 2001, 34(5): 511-518 (in Chinese with English abstract) 
[16] Cheng S-H(程式华), Zhai H-Q(翟虎渠). Comparison of some plant type components in super yielding hybrids of intersubspecies rice. Acta Agron Sin (作物学报), 2000, 26(6): 713-718 (in Chinese with English abstract) 
[17] Chen W-F(陈温福), Xu Z-J(徐正进), Zhang W-Z(张文忠). Creation of new plant type and breeding rice for super high yield. Acta Agron Sin (作物学报), 2001, 27(5): 665-672 (in Chinese with English abstract) 
[18] Zeng Y-J(曾勇军), Shi Q-H(石庆华), Pan X-H(潘晓华), Han T(韩淘). Preliminary study on the plant type characteristics of double cropping rice in middle and lower reaches of Changjiang River
[J]. Acta Agron Sin (作物学报.2009, 35(3):546-551  
[19] Ashikari M, Sakakibara H, Liin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745 
[20] Chu H W, Qian Q, Liang W Q, Yin C S, Tan H X, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D B. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice
[J].Plant Physiol 
[21] Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, Liang G H, Gu M H. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L
[J].). Theor Appl Genet 
[22] Zhou Y, Zhu J Y, Li Z Y, Yi C D, Liu J, Zhang H G, Tang S Z, Gu M H, Liang G H. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication
[J].Genetics 
[23] Lei H-S(雷宏俶). Discussion on character variations between main stem and tillers and tiller uniformity in different density for cultivated rice and wheat. In: A Collection of the Thesis on Population Analysis of Rice and Wheat (稻麦群体研究论文集). Shanghai: Shanghai Scientific and Technical Publishers, 1961. pp 93-100 (in Chinese) 
[24] Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encode a putative transmembrane protein
[J].Theor Appl Genet 
[25] Mackill D J, Ni J J. Molecular mapping and marker-assisted selection for major-gene-traits in rice. In: Khush G S, Brar D S, Handy B, eds. Rice Genetics IV. Los Bailos, Philippines: International Rice Research Institute, 2001. pp 137-151
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!