欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1425-1430.doi: 10.3724/SP.J.1006.2010.01425

• 综述 •    下一篇

中国作物分子育种现状与发展前景

黎裕,王建康,邱丽娟,马有志,李新海,万建民*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京100081
  • 收稿日期:2010-06-28 修回日期:2010-07-05 出版日期:2010-09-12 网络出版日期:2010-07-12
  • 通讯作者: 万建民,E-mail: wanjm@caas.net.cn; Tel: 010-82108563
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100101)资助.

Crop Molecular Breeding in China:Current Status and Perspectives

LI Yu,WANG Jian-Kang,QIU Li-Juan,MA You-Zhi,LI Xin-Hai,WAN Jian-Min*   

  1. Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences,Beijing 100081,china
  • Received:2010-06-28 Revised:2010-07-05 Published:2010-09-12 Published online:2010-07-12
  • Contact: WAN Jian-MIn,E-mail: wanjm@caas.net.cn; Tel: 010-82108563

摘要: 近年来,随着基因组测序等多种技术实现突破,基因组学、表型组学等多门“组学”及生物信息学得到迅猛发展,作物育种理论和技术也发生了重大变革。以分子标记育种、转基因育种、分子设计育种为代表的现代作物分子育种技术逐渐成为了全世界作物育种的主流,在我国也正在成为作物遗传改良的重要手段。本文在界定分子育种的基础上,简要分析了中国作物分子育种研究现状和面临的问题,探讨了未来我国作物分子育种的发展策略。

关键词: 作物, 分子标记育种, 转基因育种, 分子设计育种, 战略

Abstract: With some technological breakthroughs such as sequencing and microarray in the recent years, genomics, transcriptomics, proteomics, metalomics and phenomics have made a great progress in the world. Theories and technologies of crop breeding have also been revolutionarized considerably. Traditional crop breeding is based on phenotypic selection, which is often called “empirical breeding” with poor predictability, long breeding cycle and low breeding efficiency. Modern crop molecular breeding including marker-assisted breeding, transgenic breeding and molecular design breeding has become an important direction in the field of plant breeding. It is based on the combination of genotypic selection and phenotypic selection and thus target genes/alleles can be directly selected and pyramided. Therefore, the efficiency of molecular breeding can be improved and the breeding duration can be shortened. The paper defines the concept of mole

Key words: Crop, Molecular breeding, Marker-assisted breeding, Transgenic breeding, Molecular design breeding, Strategy

[1] Jauhar P P. Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges
[J].Crop Sci.2006, 46:1841-1859 
[2] Stuber C W, Polacco M, Senior M L. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potential
[J].Crop Sci.1999, 39:1571-1583  
[3] Moose S P, Mumm R H. Molecular plant breeding as the foundation for 21st century crop improvement
[J].Plant Physiol.2008, 147:969-977 
[4] Ribaut J M, de Vicente M C, Delannay X. Molecular breeding in developing countries: challenges and perspectives
[J].Curr Opin Plant Biol.2010, 13:213-218  
[5] Wan J-M(万建民). Present status and prospect of molecular breeding in rice. Rev China Agric Sci Tech中国农业科技导报), 2007, 9(2): 1-9 (in Chinese with English abstract) 
[6] Xu Y, Crouch J H. Marker-assisted selection in plant breeding: from publications to practice
[J].Crop Sci.2008, 48:391-407 
[7] Wang J, Chapman S C, Bonnett D G, Rebetzke G J. Simultaneous selection of major and minor genes: use of QTL to increase selection efficiency of coleoptile length of wheat (Triticum aestivum L
[J].). Theor Appl Genet.2009, 119:65-74 
[8] Bernardo R. Molecular marker and selection for complex traits in plants: Learning from the last 20 2008s
[J].Crop Sci.2008, 48:1649-1664  
[9] Collard B C Y, Mackill D J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century
[J].Phil Trans R Soc B.2008, 363:557-572  
[10] Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines
[J].Theor Appl Genet.1996, 92:191-203  
[11] Zamir D. Improving plant breeding with exotic genetic libraries
[J].Nat Rev Genet.2001, 2:983-989  
[12] Li Z K, Fu Y F, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Rey J D, Vijayakumar C H M, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L
[J].). Plant Mol Biol.2005, 59:33-52 
[13] Podlich D W, Winkler C R, Cooper M. Mapping as you go: an effective approach for marker-assisted selection of complex traits
[J].Crop Sci.2004, 44:1560-1571 
[14] Heffner E L, Sorrells M E, Jannink J-L. Genomic selection for crop improvement
[J].Crop Sci.2009, 49:1-12   
[15] Rommens C M. Barriers and paths to market for genetically engineered crops
[J].Plant Biotech J.2010, 8:101-111  
[16] Visarada K B R S, Meena K, Aruna C, Srujana S, Saikishore N, Seetharama N. Transgenic breeding: perspectives and prospects
[J].Crop Sci.2009, 49:1555-1563  
[17] Lemaux P G. Genetically engineered plants and foods: A scientisti’s analysis of the s (Part II)
[J].Annu Rev Plant Biol.2009, 60:511-559   
[18] Peleman J D, van der Voort J R. Breeding by design
[J].Trends Plant Sci.2003, 8:330-334  
[19] Wan J-M(万建民). Perspectives of molecular design breeding in crops. Acta Agron Sin (作物学报), 2006, 32(3): 455-462 (in Chinese with English abstract) 
[20] Wang J K, Wan X Y, Li H H, Pfeiffer W H, Crouch J, Wan J M. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach
[J].Theor Appl Genet.2007, 115:87-100 
[21] Gu M-H(顾铭洪), Liu Q-Y(刘巧泉). Prospects of crop breeding by molecular design. J Yangzhou Univ (Agric Life Sci Edn) (扬州大学学报?农业与生命科学版), 2009, 30(1): 64-67 (in Chinese with English abstract) 
[22] Wei X Jin, Liu L L, Xu J F, Jiang L, Zhang W W, Wang J K, Zhai H Q, Wan J M. Breeding strategies for optimum heading date using genotypic information in rice
[J].Mol Breed.2009, 25:287-298  
[23] Wang C L, Zhang Y D, Zhu Z, Chen T, Zhao L, Lin J, Zhou L H. Development of a new japonica rice variety Nanjing 46 with good eating quality by marker assisted selection. Mol Plant Breed-1076 , 2009, 7: 1070   
[24] Yu X-D(喻修道), Xu Z-S(徐兆师), Chen M(陈明), Li L-C(李连城), Ma Y-Z(马有志). The progress and application of wheat transformation technology. Sci Agric Sin (中国农业科学), 2010, 43(8): 1539-1553 (in Chinese with English abstract) 
[25] Wang J K, van Ginkel M, Podlich D, Ye G Y, Trethowan R, Pfeiffer W, DeLacy I H, Cooper M, Rajaram S. Comparison of two breeding strategies by computer simulation
[J].Crop Sci.2003, 43:1764-1773  
[26] Wang J-K(王建康), Pfeiffer W H. Principle of simulation modeling with applications in plant breeding. Sci Agric Sin (中国农业科学), 2007, 40(1): 1-12 (in Chinese with English abstract) 
[27] Rothstein S J. Returning to our roots: Making plant biology research relevant to future challenges in agriculture
[J].Plant Cell.2007, 19:2695-2699  
[28] Wang Y H, Xue Y B, Li J Y. Towards molecular breeding and improvement of rice in China
[J].Trends Plant Sci.2005, 10:610-614 
[29] Edwards D, Batley J. Plant genome sequencing: applications for crop improvement
[J].Plant Biotech J.2010, 8:2-9 
[30] Naqvi S, Farre G, Sanahuja G, Capell T, Zhu C, Christou P. When more is better: multigene engineering in plants
[J].Trends Plant Sci.2009, 15:48-56
[1] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[2] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[3] 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展[J]. 作物学报, 2022, 48(1): 1-14.
[4] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[5] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615.
[6] 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019.
[7] 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458.
[8] 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079.
[9] 李艳大, 曹中盛, 舒时富, 孙滨峰, 叶春, 黄俊宝, 朱艳, 田永超. 基于作物生长监测诊断仪的双季稻叶干重监测模型[J]. 作物学报, 2021, 47(10): 2028-2035.
[10] 古丽努尔·依沙克,买买提·沙吾提,马春玥. 基于多时相双极化SAR数据的作物种植面积提取[J]. 作物学报, 2020, 46(7): 1099-1111.
[11] 杨海波,张加康,杨柳,贾禹泽,刘楠,李斐. 品种和生育时期对冠层光谱指数(NDVI)估测马铃薯植株氮素浓度的影响[J]. 作物学报, 2020, 46(6): 950-959.
[12] 姚兆磊, 张继宗, 杜玉琼, 刘玉华, 张立峰. 华北寒旱区作物轮作的生产效应[J]. 作物学报, 2020, 46(12): 1923-1932.
[13] 栗扬,姚露花,郭欣,赵晓,黄蕾,王登科,张学风,肖前林,杨瑞吉,郭彦军. 三种豆科绿肥作物茎和叶角质层蜡质化学组成分析[J]. 作物学报, 2020, 46(01): 131-139.
[14] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[15] 赵明,周宝元,马玮,李从锋,丁在松,孙雪芳. 粮食作物生产系统定量调控理论与技术模式[J]. 作物学报, 2019, 45(4): 485-498.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!