欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1615-1623.doi: 10.3724/SP.J.1006.2010.01615

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

亚洲地区中、外大豆品种幼苗期耐淹性与SSR标记的关联分析

孙慧敏1,张军1,2,赵团结1,*,盖钧镒1,*   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095;2滨州职业学院,山东滨州256603
  • 收稿日期:2010-02-08 修回日期:2010-05-23 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 通讯作者: 赵团结, 盖钧镒, E-mail: sri@njau.edu.cn; Tel: 025-84395405
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB1017, 2009CB1184, 2010CB1259),国家高科技发展计划(863计划)项目(2006AA1001, 2009AA1011),国家科技支撑计划项目(2006BAD13B05-7),国家自然科学基金资助项目(30490250, 32671266)和教育部高等学校创新引智计划项目(B08025)资助。

Association Analysis between Submergence Tolerance and SSR Markers in Domestic and Foreign Soybean Cultivars in Asia

SUN  Hui-Min1,ZHANG  Jun1,2,ZHAO  Tuan-Ji1,*,GAI  Jun-Yi1,*   

  1. 1 Soybean Research Institute / Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China; 2 Binzhou Vocational College, Binzhou 256603, China
  • Received:2010-02-08 Revised:2010-05-23 Published:2010-10-12 Published online:2010-08-04

摘要: 利用自然群体进行关联分析是检测目标性状QTL、揭示其遗传基础的有效方法。对国内黄淮和南方地区和东亚、东南亚、南亚291份大豆品种幼苗期耐淹性和64个SSR标记的关联分析结果表明,整个群体由国内和国外2个不同的亚群体组成,2个亚群均存在连锁不平衡。在群体1 (国内)中分别检测到相对死苗率、相对失绿率、相对萎蔫率的关联位点3、7和12个,群体2 (国外)中相应位点6、3和5个;多个位点兼与2个或者3个耐淹性状关联;部分关联位点与连锁定位结果一致。在2个群体中分别筛选出3个耐淹性状减效最大(最耐淹)的优异等位变异24个和22个。相对死苗率优异等位变异在黄淮、南方地区5个主要系谱中分布不同,育种轮次间有波动。结合基因型和耐性表现,从国内材料中优选出合豆2号、黔豆3号、诱变31、南农493-1,从国外材料中优选出PI208432、PI377576、PI481690等耐淹载体材料,为耐淹育种奠定材料和标记辅助选择育种的基础。

关键词: 大豆品种, 耐淹性, SSR标记, 关联分析, 优异等位变异

Abstract: Association mapping is one of the important ways to detect QTLs and reveal genetic bases of target traits in the natural populations. According to the analyses of genetic structure of the total 291 Asian soybean accessions with 64 simple-sequence repeat (SSR) markers, the tested population was divided into Chinese population (Population 1) and exotic population (Population 2). Linkage disequilibrium was detected extensively in both populations. The results of association mapping showed that total 3, 7, and 12 SSR loci in Population 1 were associated with three submergence tolerance traits, i.e. relative seedling death rate, relative chlorophyll deficiency rate and relative wilting rate, while 6, 3, and 5 associated SSR loci were in Population 2. Several loci were associated simultaneously with two or three tolerance traits, indicating their common genetic bases, while some loci were consistent with QTLs detected from family-based linkageship mapping procedure. Total 24 and 22 elite alleles of the three indicators of submergence tolerance, as well as their carriers, were detected in the two populations, respectively. The frequency distribution of elite allele of relative seedling death rate varied among five major pedigrees of released cultivars from Huang-Huai-Hai Valleys and southern China. Some cultivars, such as Hedou 2 Hao, Qiandou 3 Hao, Youbian 31, and Nannong 493-1 in Population 1, and PI208432, PI377576, PI481690 in Population 2, with elite alleles and performance of tolerance to submergence were selected as donors in breeding for tolerance to submergence stress in soybean.

Key words: Released cultivar, Submergence tolerance, SSR marker, Association analysis, Elite allele

[1]         Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet, 1999, 22: 139–144
[2]         Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol 2005, 57: 461–485
[3]         Aranzana M J, Kim S, Zhao K Y, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C L, Toomajian C, Traw B, Zheng H G, Nergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously Known flowering time and pathogen resistance genes. PLoS Genet, 2005, 1: 60
[4]         Zhu Y L, Song Q J, Hyten D L, Tassell C P van, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B. Single-nucleotide polymorphisms in soybean. Genetics, 2003, 163: 1123–1134
[5]         Wang R-H(王荣焕), Wang T-Y(王天宇), Li Y(黎裕). Application of association analysis in molecular evaluation of crop germplasm resources. J Plant Genet Resour(植物遗传资源学报), 2007, 8(3): 366–372 (in Chinese with English abstract)
[6]         Jin L(金亮), Bao J-S(包劲松). Progress on the trait-marker association analysis in plants. Mol Plant Breed (分子植物育种), 2009, 7(6): 1048–1063 (in Chinese with English abstract)
[7]         Hyten D L, Choi I Y, Song Q J, Shoemaker R C, Nelson R L, Costa J M, Specht J E, Cregan P B. Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics, 2007, 175: 1937–1944
[8]         Wen Z X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin (作物学报), 2008, 34(7): 1169–1178 (in Chinese with English abstract)
[9]         Jun T H, Van K J, Kim M Y, Lee S H, Walker D R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2008, 162:179–191
[10]      Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Genetic diversity, specificity and population differentiation of soybean cultivars in Asia.Sci Agric Sin (中国农业科学), 2008, 41(11): 3511–3520 (in Chinese with English abstract)
[11]      Abe J, Xu D H, Suzuki Y, Kanazawa A, Shimamoto Y. Soybean germplasm pools in Asia revealed by nuclear SSRs. Theor Appl Genet, 2003, 106: 445–453
[12]      Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Association analysis of agronomic trait QTLs with SSR markers in released soybean cultivars. Acta Agron Sin(作物学报), 2008, 34(12): 2059–2069 (in Chinese with English abstract)
[13]      Wang F(王芳), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Evaluation, eco-region characterization and elite germplasm identification of submergence tolerance at seeding stage in wild and cultivated soybeans. Soybean Sci (大豆科学), 2007, 26(6): 828–834 (in Chinese with English abstract)
[14]      Sun H-M(孙慧敏), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Evaluation and identification of elite germplasm with submergence tolerance at young seedling stage of soybean cultivars released in Asia. Soybean Sci (大豆科学), 2010, 29(1): 1–6 (in Chinese with English abstract)
[15]      Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959
[16]      Edward Buckler Lab. Maize Diversity Research.
[2007-01-30]
[http://www.maizegenetics.net/bioinformatics/tassel/]
[2007-09-20]
[17]      Githiri S M, Watanabe S, Harada K, Takahashi R. QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed, 2006, 125: 613–618
[18]      Cornelious B, Chen P, Chen Y, Leon N D, Shannon J G, Wang D. Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed, 2005, 16: 103–112
[19]      Wang J, McClean P E, Lee R, Goos R J, Helms T. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet, 2008, 116: 777–787
[20]      Reyna N, Cornelious B, Shamnon J G, Sneller C H. Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm. Crop Sci, 2003, 43: 2077–2082
[21]      Wang F(王芳), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean
[Glycine max (L.) Merr.]. Acta Agron Sin (作物学报), 2008, 34(5): 748–753 (in Chinese with English abstract)
[22]      Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Inheritance of elite alleles of yield and quality traits in pedigrees of major cultivar families released in Huang-Huai Valleys and southern China. Acta Agron Sin (作物学报), 2009, 35(2): 191–202 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[4] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[5] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[6] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[7] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[8] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[9] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[10] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[11] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[12] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[13] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[14] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!