欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1736-1742.doi: 10.3724/SP.J.1006.2010.01736

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对稻麦干物质转运与氮肥利用的影响

张均华1, 2,刘建立1,*,张佳宝1,赵夫涛3,程亚南1,2,王伟鹏1,2   

  1. 1中国科学院南京土壤研究所,江苏南京210008;2中国科学院研究生院,北京100049;3浙江清华长三角研究院粉体及新材料工程中心,浙江长兴313100
  • 收稿日期:2010-04-29 修回日期:2010-05-07 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 通讯作者: 刘建立, E-mail: jlliu@issas.ac.cn; Tel: 025-86881226
  • 基金资助:

    本研究由国家自然科学基金项目(40871105),国家高技术研究发展计划(863计划)项目(2006AA10Z208),中科院农业重大项目(KSCX1-YW-09-05)资助。

Effects of Nitrogen Application Rates on Translocation of Dry Matter and Utilization of Nitrogen in Rice and Wheat

ZHANG  Jun-Hua12,LIU  Jian-Li1*,ZHANG  Jia-Bao1,ZHAO  Fu-Chao3,CHENG  Ya12,WANG  Wei-Peng12   

  1. 1 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China; 3 Powder and New Materials Engineering Center Yangzi Dela Research Institute of Tsinghua University, Changxing 313100, China
  • Received:2010-04-29 Revised:2010-05-07 Published:2010-10-12 Published online:2010-08-04
  • Contact: LIU Jian-Li,E-mail:jlliu@issas.ac.cn;Tel:025-86881226

摘要: 为探讨太湖地区稻麦轮作农田适宜施氮量及氮素对干物质转运与氮肥利用的影响, 于2007—2009期间在中国科学院常熟农业生态实验站建立田间定位试验。设置4个氮肥处理水平, 分别用N0、N1、N2和N3表示。水稻各处理的施氮量分别为0、125、225和325 kg hm-2;小麦相应处理施氮量分别为0、94、169和244 kg hm-2(为稻季相应处理施氮量的75%)。结果表明, 水稻施氮量超过225 kg hm-2, 小麦施氮量超过169 kg hm-2后, 产量增加不显著。水稻、小麦开花期干物质积累量均随施氮量的增加而增加, 但花前营养器官干物质转运对籽粒贡献率均随氮肥用量增加而降低;氮肥农学效率与氮肥生理效率均随氮肥用量增加而降低, 且N2与N3处理之间差异不显著;边际产量均随施氮量增加而下降, N3处理边际效益水稻平均低于3.1 kg kg-1, 小麦平均低于2.4 kg kg-1。综上所述, 无论水稻还是小麦, N2处理既能保证较高物质转运率, 又能保证较高的氮肥利用效率与经济效益。

关键词: 稻麦轮作, 合理施氮量, 干物质转运, 氮肥利用

Abstract: Excessive application of nitrogen-fertilizers often results in low nitrogen use efficiency and high nitrogen losses in Tai Lake region. Many studies on wheat (Triticum aestivum L.) or rice (Oryza sativaL.) physio-ecology have been carried out aiming at high yield with reasonable amount of nitrogen fertilizer. However, most experiments have been focused on single crop. Also, assimilate accumulations before flowering play an important role on grain yield. In order to disclose the mechanism of dry matter translocation, optimum amount of nitrogen application and utilization of nitrogen under rice-wheat rotations, a field experiment was conducted under different nitrogen application rates from 2007 to 2009 at the Changshu Agroecological Experiment Station, Chinese Academy of Sciences. The treatments included four nitrogen fertilizer rates for rice and wheat, respectively: N1 (125 and 94 kg N ha-1), N2 (225 and 169 kg N ha-1), N3 (325 and 244 kg N ha-1), and N0 control (no nitrogen). The results showed that no significant increase in crop production was found when nitrogen application rate of rice and wheat was in excess of 225 kg ha-1 and 169 kg ha-1 respectively. The dry matter accumulations at anthesis of rice and wheat increased with the nitrogen rate increment, while the contribution of dry matter translocation from vegetative organs to grains before flowering decreased with increasing the nitrogen application rates. The nitrogen agronomic efficiencies and physiological efficiencies in rice and wheat were reduced with increasing the nitrogen rates, and these was no significant difference between N2 and N3 treatments. The marginal productions were declined with the increase of nitrogen applications, with lower than 5.5 kg kg-1 in N3 treatment for both rice and wheat. Therefore, whether for rice or for wheat, the N2 treatment could maintain higher translocation rate of dry matter, higher nitrogen use efficiency and higher economic benefit.

Key words: Rice-wheat rotation, Reasonalble nitrogen rate, Translocation of dry matter, Utilization of nitrogen

[1] Tang Y-S(唐玉姝), Ci E(慈恩), Yan T-M(颜廷梅), Wei C-F(魏朝富), Yang L-Z(杨林章), Shen M-X(沈明星). Relationship between soil enzyme activity and soil fertility of paddy fields under wheat-rice cropping system in a long-term experiment in Taihu Lake region. Acta Pedol Sin (土壤学报), 2008, 45(5): 1000–1006 (in Chinese with English abstract)
[2] Zhu Z L, Chen D L. Nitrogen fertilizer use in China-contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys, 2002, 63: 117–127
[3] Yan J(晏娟), Shen Q-R(沈其荣), Yin B(尹斌), Zhao S-L(张绍林), Zhu Z-L(朱兆良). Effects of fertilizer N application rate on yields and use efficiencies in rice-wheat rotation system in Tai Lake region. Soils (土壤), 2009, 41(3): 372–376 (in Chinese with English abstract)
[4] Wang D-J(王德建), Lin J-H(林静慧), Sun R-J(孙瑞娟), Xia L-Z(夏立忠), Lian G(连纲). Optimum nitrogen rate for a high productive rice-wheat system and its impact on the groundwater in the Taihu Lake area. Acta Pedol Sin (土壤学报), 2003, 40(3): 426–432 (in Chinese with English abstract)
[5] Huang J-B(黄进宝), Fan X-H(范晓辉), Zhang T-L(张绍林), Ge G-F(葛高飞), Sun Y-H(孙永红), Feng X(冯霞). Investigation on economically- ecologically appropriate amount of nitrogen fertilizer applied in rice production in Fe-leaching-Stagnic Anthrosols of the Taihu Lake region. Acta Ecol Sin (生态学报), 2007, 27(2): 588–595 (in Chinese with English abstract)
[6] Yan J(晏娟), Yin B(尹斌), Zhang T-L(张绍林), Shen Q-R(沈其荣), Zhu Z-L(朱兆良). Studies on the nitrogen fertilizer application of rice-wheat rotation system in Taihu Lake Region. J Nanjing Agric Univ (南京农业大学学报), 2009, 32(1): 61–66 (in Chinese with English abstract)
[7] Li R-G(李荣刚). Efficiency and Regulation of Fertilizer Nitrogen in High-Yield Farmland. PhD Dissertation of China Agricultural University, 2000 (in Chinese with English abstract)
[8] Wang Y-F(王月福), Yu Z-W(于振文), Li S-X(李尚霞), Yu S-L(余松烈). Effect of nitrogen nutrition on carbon assimilation and transfer and yield after wheat anthesis. J Triticeae Crops (麦类作物学报), 2002, 22(2): 55–59 (in Chinese with English abstract)
[9] Ma D-H(马东辉), Wang Y-F(王月福), Zhou H(周华), Sun H(孙虎). Effect of postanthesis soil water status and nitrogen on grain yield and canopy biomass accumulation and transportation of winter wheat. J Triticeae Crops (麦类作物学报), 2007, 27(5): 847–851 (in Chinese with English abstract)
[10] Lü J-Y(吕金印), Shan L(山仑), Gao J-F(高俊凤). Mobilization and distribution of carbon assimilates of wheat under water deficits. Acta Agric Nucl Sin (核农学报), 2002, 16(4): 228–23l (in Chinese with English abstract)
[11] Pheloung P C, Siddique K H. Contribution of stem dry matter to grain yield in wheat cultivars. Aust Plant Physiol, 1991, 18: 52–64
[12] Yan J(晏娟), Shen Q-R(沈其荣), Yin B(尹斌). Effects of nitrogen application rate on uptake, translocation and use of nitrogen by rice germ plasm 4007 high in nitrogen use efficiency. Acta Pedol Sin (土壤学报), 2010, 47(1): 107–114 (in Chinese with English abstract)
[13] Fan M S, Jiang R F, Liu X J, Zhang F S. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Field Crops Res, 2005, 91: 307–318
[14] Tian Y-H(田玉华), Yin B(尹斌), He F-Y(贺发云), Zhu Z-L(朱兆良). Recovery by crop and loss of nitrogen fertilizer applied in rice season in Taihu Lake region. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(1):55–61 (in Chinese with English abstract)
[15] Tirol P, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake an d utilization efficiency. Field Crops Res, 1996, 46: l27–143
[16] Tian J-C(田纪春), Deng Z-Y(邓志英), Hu R-B(胡瑞波), Wang Y-X(王延训).Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin (作物学报), 2006, 32(11): 1699–1705 (in Chinese with English abstract)
[17] Yadav R L. Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crops Res, 2003, 81: 39–51
[18] Ma D-Y(马冬云), Guo T-C(郭天财), Wang C-Y(王晨阳). Effects of nitrogen application rates on accumulation, translocation, and partitioning of photosynthate in winter wheat at grain filling stage. Acta Agron Sin (作物学报), 2008, 34(6): 1027–1033 (in Chinese with English abstract)
[19] Zhang S-Q(张胜全), Fang B-T(方保停), Zhang Y-H(张英华), Zhou S-L(周顺利), Wang Z-M(王志敏). Utilization of water and nitrogen and yield formation under three limited irrigation schedules in winter wheat. Acta Agron Sin (作物学报), 2009, 35(11): 2045–2054 (in Chinese with English abstract)
[20] Zhu Z-L(朱兆良). Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil Environ Sci (土壤与环境), 2000, 9(1): 1–6 (in Chinese with English abstract)
[1] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[2] 黄恒, 姜恒鑫, 刘光明, 袁嘉琦, 汪源, 赵灿, 王维领, 霍中洋, 许轲, 戴其根, 张洪程, 李德剑, 刘国林. 侧深施氮对水稻产量及氮素吸收利用的影响[J]. 作物学报, 2021, 47(11): 2232-2249.
[3] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[4] 杨志远,李娜,马鹏,严田蓉,何艳,蒋明金,吕腾飞,李郁,郭翔,胡蓉,郭长春,孙永健,马均. 水肥“三匀”技术对水稻水、氮利用效率的影响[J]. 作物学报, 2020, 46(3): 408-422.
[5] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[6] 李静,闫金垚,胡文诗,李小坤,丛日环,任涛,鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响[J]. 作物学报, 2019, 45(6): 941-948.
[7] 唐会会,许艳丽,王庆燕,马正波,李光彦,董会,董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442.
[8] 剧成欣, 周著彪, 赵步洪, 王志琴, 杨建昌. 不同氮敏感性粳稻品种的氮代谢与光合特性比较[J]. 作物学报, 2018, 44(03): 405-413.
[9] 李晓峰,程金秋,梁健,陈梦云,任红茹,张洪程,霍中洋*,戴其根,许轲,魏海燕,郭保卫. 秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响[J]. 作物学报, 2017, 43(06): 912-924.
[10] 郭九信,孔亚丽,谢凯柳,李东海,冯绪猛,凌宁,王敏,郭世伟. 养分管理对直播稻产量和氮肥利用率的影响[J]. 作物学报, 2016, 42(07): 1016-1025.
[11] 田晓雅,刘欣,王强盛,蒋琪,冯金侠,张慧,丁艳锋. 油菜素甾醇(BRs)对杂交粳稻灌浆期光合物质、群体氮素积累和利用的影响[J]. 作物学报, 2015, 41(12): 1844-1857.
[12] 叶德练,王玉斌,周琳,李建民,段留生,张明才,李召虎. 乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应[J]. 作物学报, 2015, 41(11): 1701-1710.
[13] 剧成欣,陶进,钱希旸,顾骏飞,赵步洪,杨凯鹏,王志琴,杨建昌. 不同年代中籼水稻品种的产量与氮肥利用效率[J]. 作物学报, 2015, 41(03): 422-431.
[14] 刘立军,王康君,卞金龙,熊溢伟,陈璐,王志琴,杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系[J]. 作物学报, 2014, 40(11): 1999-2007.
[15] 林晶晶,李刚华,薛利红,张巫军,许慧阁,王绍华,杨林章,丁艳锋. 15N示踪的水稻氮肥利用率细分[J]. 作物学报, 2014, 40(08): 1424-1434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!