欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1725-1735.doi: 10.3724/SP.J.1006.2010.01725

• 耕作栽培·生理生化 • 上一篇    下一篇

高产、抗旱和耐盐选择对水稻产量相关性状的影响

周政1,**,李宏2,**,孙勇1,黄道强2,朱苓华1,卢德城2,李康活2,徐建龙1,*,周少川2,*,黎志康1,3   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与遗传改良国家重大科学工程, 北京 100081;2 广东省农业科学院水稻研究所, 广东广州 510640;3 International Rice Research Institute, DAPO Box 7777, Metro Manila, the Philippines
  • 收稿日期:2010-03-04 修回日期:2010-06-30 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 基金资助:
    本研究由国家自然科学基金联合资助项目(U0631002)和引进国际先进农业科学技术计划(948计划)项目(2006-G51)资助。

Effect of Selection for High Yield, Drought and Salinity Tolerances on Yield-Related Traits in Rice (Oryza sativa L.)

ZHOU Zheng1,**,LI Hong2,**,SUN Yong1,HUANG Dao-Qiang2,ZHU Ling-Hua1,LUO De-Cheng2,LI Kang-Huo2,XU Jian-Long1,*,ZHOU Shao-Chuan2,*,LI Zhi-Kang1,3   

  1. 1Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/National key Facility for Crop Gene Resources and Genetic Improvement,Beijing 100081,China;2Rice Research Institute of Guangdong Academy of Agricultural Sciences,Guangzhou 510640,China;3International Rice Research Institute,DAPO Box 7777,Metro Manila,The Philippines
  • Received:2010-03-04 Revised:2010-06-30 Published:2010-10-12 Published online:2010-08-04

摘要: 水稻生产受到许多环境因素的胁迫,其中干旱和盐害是两大最重要的非生物逆境,培育抗旱和耐盐品种是减轻这两种逆境危害最经济有效的措施。利用籼型供体广恢122、Bg94-1和粳型供体原粳7号、沈农89366导入高产优质籼型品种丰矮占1号背景,创建BC3F5导入系群体,经目标性状筛选,以获得的2个高产抗旱导入系丰矮占1号/广恢122和丰矮占1号/原粳7号为亲本进行高产抗旱聚合,以高产耐盐导入系丰矮占1号/沈农89366和丰矮占1号/Bg94-1进行高产耐盐聚合。以聚合亲本为对照,在2个F2聚合群体中分别进行抗旱、耐盐、高产筛选,每个聚合群体分别获得30~42个不等的抗旱、耐盐和高产性状的极端个体,不同性状的选择强度变幅为8.3%~11.7%。3个目标性状极端选择后代在正常水田种植,其产量相关性状抽穗期、单株有效穗数、穗总粒数、穗实粒数、结实率、千粒重等均呈现明显的分离,各性状的变异方向因不同的选择群体和选择性状而异。在2个聚合组合的6个选择群体后代,有效穗数和每穗实粒数对单株产量的贡献最大,前者平均贡献率为18.5%,变幅为12.9%~27.4%,后者平均贡献率为13.1%,变幅为9.0%~21.2%。经过不同性状的交叉筛选,2个聚合组合的抗旱选择群体分别出现10.0%和36.7%耐盐的株系,其平均耐盐水平与耐盐选择群体相当,表明水稻抗旱和耐盐存在一定程度的遗传重叠。提出了利用回交导入系先进行抗旱、耐盐筛选,再进行产量选择和在此基础上对3个性状进一步聚合的高产抗旱和高产耐盐新品种培育策略。

关键词: 水稻, 导入系, 抗旱性, 耐盐性, 聚合育种, 遗传重叠

Abstract: Rice production is limited by many environmental factors, of which drought and salinity are the most important abiotic stresses which greatly constrain yield and planting area of rice. Development of drought and salinity tolerant (DT, ST) varieties is a most effective method to solve this problem. Using BC3F5 introgression populations derived from a elite indica variety Fengaizhan 1 (FAZ1) as the recurrent parent and indica varieties Guanghui 122, Bg 94-1, and japonica varieties Yuanjing 7 and Shennong 89366 as donor parents, two high yield (HY) lines with DT, FAZ1/Guanghui 122 and FAZ1/Yuanjing 7, and two HY lines with ST, FAZ1/Shennong 89366 and FAZ1/Bg94-1, were selected and used for the pyramiding of HY and DT or ST. As compared with the pyramiding parents, DT, ST and HY lines were selected from the two pyramiding F2 populations, getting 30–42 extreme DT, ST and HY individuals with selection intensity of 8.3%–11.7%, respectively. Under the irrigation condition, the selected populations with three target-trait all showed obvious segregations of yield-related traits including heading date, reproductive panicle number per plant, spikelet number per panicle, filled grain number per panicle, seed setting rate and 1000-grain weight. Direction of variation varied with the selected populations and the related traits. Among the six selected populations, the reproductive panicle number per plant and filled grain number per panicle had greatest contributions to yield with an average of 18.5% and a range of 12.9%–27.4% for the former an average of 13.1% and a range of 9.0%–21.2% for the latter. After intercross screening, around 10.0%–36.7% of ST lines were selected from the DT-selected populations of the two pyramiding crosses with an equivalent resistance levels as those ST-selected populations on the average, indicating that some genetic overlapping exists between DT and ST. The strategy of first screening against DT or ST then HY and further pyramiding of these three target traits from different donors is recommended for rice breeding for high yield with DT and ST.

Key words: Rice, Introgression lines, Drought tolerance, Salinity tolerance, Pyramiding breeding, Genetic overlapping

[1]Brown L R, Halwei L B. China’s water shortage could share world food security. World Watch, 1998, 718: 3-4
[2]Pandey S, Behura D, Villano R, Naik D. Economic Cost of Drought and Farmers’ Coping Mechanisms: A Study of Rainfed Rice in Eastern India. IRRI Discussion Paper Series, 2000. pp 1-35
[3]Fischer K S, Lafitte R, Fukai S, Atlin G, Hardy B. Breeding Rice for Drought-prone Environments. Los Banos, Philippines: International Rice Research Institute, 2003. p 7
[4]Poonamperuma F N, Bandyopadhya A K. Soil salinity as constraints on food production in the humid tropics. In: Soil Related Constraints to Food Production in the Tropics. IRRI, Los Banos, Philippines, 1980. pp 203-216
[5]Bje-Klein G. Problem Soils As Potential Areas for Adverse Soil-Tolerant Rice Varieties in South and Southeast Asia. IRRI Research Paper Series 119, 1976. p 53
[6]McWilliam J R. The national and international importance of drought and salinity effects on agricultural production. Aust J Plant Physiol, 1986, 13: 1-13
[7]Gregorio G B, Senadhira D, Mendoza R D, Manigbas N L, Roxas J P, Guerta C Q. Progress in breeding for salinity tolerance and associated abotic stresses in rice. Field Crops Res, 2002, 76: 91-101
[8]Li Z K, Xu J L. Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, Netherlands, 2007. pp 531-564
[9]Yeo A R, Flowers T J. Salinity resistance in rice and a pyramiding approach to breeding varieties for saline soils. In: Plant Growth, Drought and Salinity. CSIRO, Melbourne, Australia. 1986. pp 161-173
[10]Fukai S, Cooper M. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res, 1995, 40: 67-86
[11]Blum A. Plant Breeding for Stress Environments. CRC Press, Boca Raton, FL, 1988
[12]Yu X-Q(余新桥), Mei H-W(梅捍卫), Li M-C(李明春), Liang W-B(梁文兵), Xu X-Y(徐小艳), Zhang J-F(张剑锋), Luo L-J(罗利军). Development and application of water-saving or drought tolerant hybrid rice. Mol Plant Breed (分子植物育种), 2005, 3(5): 637-641 (in Chinese with English abstract)
[13]Mei H-W(梅捍卫), Luo L-J(罗利军), Xu X-Y(徐小艳), Yu X-Q(余新桥), Tong H-H(童汉华), Wang Y-P(王一平), Guo L-B(郭龙彪), Ying C-S(应存山), Wu J-H(吴金红), Chen H-W(陈宏伟), Yang H(杨华), Li M-S(李明寿). Development and screening of introgressive line population based on the genetic background from high yielding restorer Zhong 413. Mol Plant Breed (分子植物育种), 2005, 3(5): 649-652 (in Chinese with English abstract)
[14]Ren G-J(任光俊), Lu X-J(陆贤军), Gao F-Y(高方远), Kang H-Q(康海岐), Lu D-H(卢代华), Liu G-C(刘光春), Ren M-X(任明鑫). Screening of near-isogenic introgression lines resistant to biotic and abiotic stresses. Mol Plant Breed (分子植物育种), 2005, 3(5): 701-703 (in Chinese with English abstract)
[15]Lafitte H R, Vijayakumar C H M, Gao Y M, Shi Y, Xu J L, Fu B Y, Yu S B, Ali A J, Domingo J, Maghirang R, Torres R, Mackill D, Li Z K. Improvement of rice drought tolerance through backcross breeding: evaluation of donors and results from drought nurseries. Field Crops Res, 2006, 97: 77-86
[16]Atlin G, Virk P, Virmani S S, Amante M. Identification of drought-tolerant genotypes for shallow rainfed lowland production. In: 2003 Annual Report of Plant Breeding, Genetics and Biotechnology Division. the International Rice Research Institute, Los Banos, The Philippines, 2004. pp 18-19
[17]Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76
[18]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte R, Jiang Y Z, Domingo-Rey J, Vijayakumar C H M, Dwivedi D, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and a forward genetics strategy for genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol, 2005, 59: 33-52
[19]Yoshida S, Forno D S, Cock J H. Laboratory Manual for Physiological Studies of Rice, 3rd edn. IRRI, Manila, Philippines, 1976. pp 1-83
[20]International Rice Research Institute. Standard Evaluation System for Rice, 4th edn. Manila, Philippines: International Rice Research Institute, 1996. p 52
[21]SAS Institute. SAS/STAT User’s Guide. SAS Institute, Cary, 1996
[22]Senadhira D, Akbar M. Development of improved rice cultivars for problem soils. In: Detruck P, Ponnamperuma F N, eds. Rice Production on Acid Soils of the Tropics, 1989. pp 367-377
[23]Kang L(康乐), Li H(李宏), Sun Y(孙勇), Lu D-C(卢德城), Zhang F(张帆), Huang D-Q(黄道强), Xu J-L(徐建龙), Wang Z-D(王志东), Zhu L-H(朱苓华), Gao Y-M(高用明), Fu B-Y(傅彬英), Li K-H(李康活), Zhou Y-L(周永力), Zhou S-C(周少川), Li Z-K(黎志康). Genetic dissection of yield potential in rice (Oryza sativa L.) using introgression lines. Acta Agron Sin (作物学报), 2008, 34(9): 1500-1509 (in Chinese with English abstract)
[24]Zhang F(张帆), Hao X-B(郝宪彬), Gao Y-M(高用明), Hua Z-T(华泽田), Ma X-F(马秀芳), Chen W-F(陈温福), Xu Z-J(徐正进), Zhu L-H(朱苓华), Li Z-K(黎志康). Improving seeding cold tolerance of japonica rice by using “Hidden Diversity” in indica rice germplasm in a backcross breeding program. Acta Agron Sin (作物学报), 2007, 33(10): 1618-1624 (in Chinese with English abstract)
[25]Sun Y(孙勇), Zang J-P(藏金萍), Wang Y(王韵), Zhu L-H(朱苓华), Mohammadhosein F, Xu J-L(徐建龙), Li Z-K(黎志康). Mining favorable salt-tolerance QTL from rice germplasm using a backcrossing introgression line population. Acta Agron Sin (作物学报), 2007, 33(10): 1611-1617 (in Chinese with English abstract)
[26]Yang J(杨静), Sun J(孙勇), Cheng L-R(程立锐), Zhou Z(周政), Wang Y(王韵), Zhu L-H(朱苓华), Cang J(苍晶), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line population in rice. Acta Agron Sin (作物学报), 2009, 35(6): 974-982 (in Chinese with English abstract)
[27]Adorada D L, Mendoza R D, Gregorio G B. Agronomic characterization of saline-tolerant elite breeding lines with multiple tole- rance for abiotic stresses. In: PBGB 2003 Annual Report. Los Banos, Philippines: International Rice Research Institute, 2004. p 29
[28]Li Z, Shen L S, Courtois B, Lafitte R. Development of near- isogenic introgression line (NIIL) sets for QTLs associated with drought tolerance in rice. In: Ribaut J M, Poland D, eds. Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. A strategic planning Workshop Held on 21-25 June 1999. CIMMYT, El Batan, 2000. pp 103-107
[29]Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet, 2004, 109: 1237-1246
[30]Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci, 2007, 47: 507-518
[31]Babu R C, Shashidhar H E, Liliry J M, Thanh N D, Ray J D, Sadasivam S, Sarkarung S, O’Toole J C, Nguyen H T. Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breed, 2001, 120: 233-238
[32]Lilley J M, Ludlow M M. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crops Res, 1996, 48: 185-197
[33]Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Sci, 2005, 45: 437-448
[34]Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, 2009, 23: 1805-1817
[35]Xiang Y, Tang N, Du H, Ye H, Xiong L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938-1952
[36]Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992
[37]Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Krishnan A, Nataraja K N, Udayakumar M, Pereira A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA, 2007, 104: 15270-15275
[38]Li Z K, Pinson S R M, Park W D, Paterson A H, Stanselt J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453-465
[39]Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetics vasis of inbreeding depression and heterosis in rice: II. Grain yield and components. Genetics, 2001, 158: 1755-1771
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!