作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1725-1735.doi: 10.3724/SP.J.1006.2010.01725
周政1,**,李宏2,**,孙勇1,黄道强2,朱苓华1,卢德城2,李康活2,徐建龙1,*,周少川2,*,黎志康1,3
ZHOU Zheng1,**,LI Hong2,**,SUN Yong1,HUANG Dao-Qiang2,ZHU Ling-Hua1,LUO De-Cheng2,LI Kang-Huo2,XU Jian-Long1,*,ZHOU Shao-Chuan2,*,LI Zhi-Kang1,3
摘要: 水稻生产受到许多环境因素的胁迫,其中干旱和盐害是两大最重要的非生物逆境,培育抗旱和耐盐品种是减轻这两种逆境危害最经济有效的措施。利用籼型供体广恢122、Bg94-1和粳型供体原粳7号、沈农89366导入高产优质籼型品种丰矮占1号背景,创建BC3F5导入系群体,经目标性状筛选,以获得的2个高产抗旱导入系丰矮占1号/广恢122和丰矮占1号/原粳7号为亲本进行高产抗旱聚合,以高产耐盐导入系丰矮占1号/沈农89366和丰矮占1号/Bg94-1进行高产耐盐聚合。以聚合亲本为对照,在2个F2聚合群体中分别进行抗旱、耐盐、高产筛选,每个聚合群体分别获得30~42个不等的抗旱、耐盐和高产性状的极端个体,不同性状的选择强度变幅为8.3%~11.7%。3个目标性状极端选择后代在正常水田种植,其产量相关性状抽穗期、单株有效穗数、穗总粒数、穗实粒数、结实率、千粒重等均呈现明显的分离,各性状的变异方向因不同的选择群体和选择性状而异。在2个聚合组合的6个选择群体后代,有效穗数和每穗实粒数对单株产量的贡献最大,前者平均贡献率为18.5%,变幅为12.9%~27.4%,后者平均贡献率为13.1%,变幅为9.0%~21.2%。经过不同性状的交叉筛选,2个聚合组合的抗旱选择群体分别出现10.0%和36.7%耐盐的株系,其平均耐盐水平与耐盐选择群体相当,表明水稻抗旱和耐盐存在一定程度的遗传重叠。提出了利用回交导入系先进行抗旱、耐盐筛选,再进行产量选择和在此基础上对3个性状进一步聚合的高产抗旱和高产耐盐新品种培育策略。
[1]Brown L R, Halwei L B. China’s water shortage could share world food security. World Watch, 1998, 718: 3-4 [2]Pandey S, Behura D, Villano R, Naik D. Economic Cost of Drought and Farmers’ Coping Mechanisms: A Study of Rainfed Rice in Eastern India. IRRI Discussion Paper Series, 2000. pp 1-35 [3]Fischer K S, Lafitte R, Fukai S, Atlin G, Hardy B. Breeding Rice for Drought-prone Environments. Los Banos, Philippines: International Rice Research Institute, 2003. p 7 [4]Poonamperuma F N, Bandyopadhya A K. Soil salinity as constraints on food production in the humid tropics. In: Soil Related Constraints to Food Production in the Tropics. IRRI, Los Banos, Philippines, 1980. pp 203-216 [5]Bje-Klein G. Problem Soils As Potential Areas for Adverse Soil-Tolerant Rice Varieties in South and Southeast Asia. IRRI Research Paper Series 119, 1976. p 53 [6]McWilliam J R. The national and international importance of drought and salinity effects on agricultural production. Aust J Plant Physiol, 1986, 13: 1-13 [7]Gregorio G B, Senadhira D, Mendoza R D, Manigbas N L, Roxas J P, Guerta C Q. Progress in breeding for salinity tolerance and associated abotic stresses in rice. Field Crops Res, 2002, 76: 91-101 [8]Li Z K, Xu J L. Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, Netherlands, 2007. pp 531-564 [9]Yeo A R, Flowers T J. Salinity resistance in rice and a pyramiding approach to breeding varieties for saline soils. In: Plant Growth, Drought and Salinity. CSIRO, Melbourne, Australia. 1986. pp 161-173 [10]Fukai S, Cooper M. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res, 1995, 40: 67-86 [11]Blum A. Plant Breeding for Stress Environments. CRC Press, Boca Raton, FL, 1988 [12]Yu X-Q(余新桥), Mei H-W(梅捍卫), Li M-C(李明春), Liang W-B(梁文兵), Xu X-Y(徐小艳), Zhang J-F(张剑锋), Luo L-J(罗利军). Development and application of water-saving or drought tolerant hybrid rice. Mol Plant Breed (分子植物育种), 2005, 3(5): 637-641 (in Chinese with English abstract) [13]Mei H-W(梅捍卫), Luo L-J(罗利军), Xu X-Y(徐小艳), Yu X-Q(余新桥), Tong H-H(童汉华), Wang Y-P(王一平), Guo L-B(郭龙彪), Ying C-S(应存山), Wu J-H(吴金红), Chen H-W(陈宏伟), Yang H(杨华), Li M-S(李明寿). Development and screening of introgressive line population based on the genetic background from high yielding restorer Zhong 413. Mol Plant Breed (分子植物育种), 2005, 3(5): 649-652 (in Chinese with English abstract) [14]Ren G-J(任光俊), Lu X-J(陆贤军), Gao F-Y(高方远), Kang H-Q(康海岐), Lu D-H(卢代华), Liu G-C(刘光春), Ren M-X(任明鑫). Screening of near-isogenic introgression lines resistant to biotic and abiotic stresses. Mol Plant Breed (分子植物育种), 2005, 3(5): 701-703 (in Chinese with English abstract) [15]Lafitte H R, Vijayakumar C H M, Gao Y M, Shi Y, Xu J L, Fu B Y, Yu S B, Ali A J, Domingo J, Maghirang R, Torres R, Mackill D, Li Z K. Improvement of rice drought tolerance through backcross breeding: evaluation of donors and results from drought nurseries. Field Crops Res, 2006, 97: 77-86 [16]Atlin G, Virk P, Virmani S S, Amante M. Identification of drought-tolerant genotypes for shallow rainfed lowland production. In: 2003 Annual Report of Plant Breeding, Genetics and Biotechnology Division. the International Rice Research Institute, Los Banos, The Philippines, 2004. pp 18-19 [17]Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao Y M, Domingo J, Maghirang R, Yu S B, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li Z K. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66-76 [18]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte R, Jiang Y Z, Domingo-Rey J, Vijayakumar C H M, Dwivedi D, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and a forward genetics strategy for genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol, 2005, 59: 33-52 [19]Yoshida S, Forno D S, Cock J H. Laboratory Manual for Physiological Studies of Rice, 3rd edn. IRRI, Manila, Philippines, 1976. pp 1-83 [20]International Rice Research Institute. Standard Evaluation System for Rice, 4th edn. Manila, Philippines: International Rice Research Institute, 1996. p 52 [21]SAS Institute. SAS/STAT User’s Guide. SAS Institute, Cary, 1996 [22]Senadhira D, Akbar M. Development of improved rice cultivars for problem soils. In: Detruck P, Ponnamperuma F N, eds. Rice Production on Acid Soils of the Tropics, 1989. pp 367-377 [23]Kang L(康乐), Li H(李宏), Sun Y(孙勇), Lu D-C(卢德城), Zhang F(张帆), Huang D-Q(黄道强), Xu J-L(徐建龙), Wang Z-D(王志东), Zhu L-H(朱苓华), Gao Y-M(高用明), Fu B-Y(傅彬英), Li K-H(李康活), Zhou Y-L(周永力), Zhou S-C(周少川), Li Z-K(黎志康). Genetic dissection of yield potential in rice (Oryza sativa L.) using introgression lines. Acta Agron Sin (作物学报), 2008, 34(9): 1500-1509 (in Chinese with English abstract) [24]Zhang F(张帆), Hao X-B(郝宪彬), Gao Y-M(高用明), Hua Z-T(华泽田), Ma X-F(马秀芳), Chen W-F(陈温福), Xu Z-J(徐正进), Zhu L-H(朱苓华), Li Z-K(黎志康). Improving seeding cold tolerance of japonica rice by using “Hidden Diversity” in indica rice germplasm in a backcross breeding program. Acta Agron Sin (作物学报), 2007, 33(10): 1618-1624 (in Chinese with English abstract) [25]Sun Y(孙勇), Zang J-P(藏金萍), Wang Y(王韵), Zhu L-H(朱苓华), Mohammadhosein F, Xu J-L(徐建龙), Li Z-K(黎志康). Mining favorable salt-tolerance QTL from rice germplasm using a backcrossing introgression line population. Acta Agron Sin (作物学报), 2007, 33(10): 1611-1617 (in Chinese with English abstract) [26]Yang J(杨静), Sun J(孙勇), Cheng L-R(程立锐), Zhou Z(周政), Wang Y(王韵), Zhu L-H(朱苓华), Cang J(苍晶), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line population in rice. Acta Agron Sin (作物学报), 2009, 35(6): 974-982 (in Chinese with English abstract) [27]Adorada D L, Mendoza R D, Gregorio G B. Agronomic characterization of saline-tolerant elite breeding lines with multiple tole- rance for abiotic stresses. In: PBGB 2003 Annual Report. Los Banos, Philippines: International Rice Research Institute, 2004. p 29 [28]Li Z, Shen L S, Courtois B, Lafitte R. Development of near- isogenic introgression line (NIIL) sets for QTLs associated with drought tolerance in rice. In: Ribaut J M, Poland D, eds. Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. A strategic planning Workshop Held on 21-25 June 1999. CIMMYT, El Batan, 2000. pp 103-107 [29]Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet, 2004, 109: 1237-1246 [30]Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci, 2007, 47: 507-518 [31]Babu R C, Shashidhar H E, Liliry J M, Thanh N D, Ray J D, Sadasivam S, Sarkarung S, O’Toole J C, Nguyen H T. Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breed, 2001, 120: 233-238 [32]Lilley J M, Ludlow M M. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crops Res, 1996, 48: 185-197 [33]Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Sci, 2005, 45: 437-448 [34]Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, 2009, 23: 1805-1817 [35]Xiang Y, Tang N, Du H, Ye H, Xiong L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938-1952 [36]Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992 [37]Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Krishnan A, Nataraja K N, Udayakumar M, Pereira A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA, 2007, 104: 15270-15275 [38]Li Z K, Pinson S R M, Park W D, Paterson A H, Stanselt J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453-465 [39]Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetics vasis of inbreeding depression and heterosis in rice: II. Grain yield and components. Genetics, 2001, 158: 1755-1771 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|