欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1877-1882.doi: 10.3724/SP.J.1006.2010.01877

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

反义trxs基因导入对不同品质类型小麦产量和品质性状的影响

任江萍,王娜,王新国,李永春,牛洪斌,王翔,尹钧*   

  1. 河南农业大学/国家小麦工程技术研究中心,河南郑州450002
  • 收稿日期:2010-03-16 修回日期:2010-05-29 出版日期:2010-11-12 网络出版日期:2010-08-04
  • 通讯作者: 尹钧,E-mail:xmzxyj@126.com;Tel:0371-63558203
  • 基金资助:

    本研究由国家自然科学基金项目(30771332)资助.

Effects of Anti-Sense Thioredoxin s on Grain Yield and Quality Properties in Two Wheat Cultivars with Different Quality Types

REN  Jiang-Ping,WANG  Na,WANG  Xin-Guo,LI  Yong-Chun,NIU  Hong-Bin,WANG  Xiang,YIN  Jun   

  1. Henan Agricultural University/National Engineering Research Centre for Wheat,Zhengzhou 450002,China
  • Received:2010-03-16 Revised:2010-05-29 Published:2010-11-12 Published online:2010-08-04
  • Contact: Yin Jun,E-mail:xmzxyj@126.com;Tel:0371-63558203

摘要: 以转反义trxs基因小麦TY18和TY34及其相应未转基因对照为材料,于2007—2009年通过大田试验系统研究了反义trxs基因导入对两种品质类型小麦籽粒产量性状和加工品质指标的影响。结果表明,4个转基因株系的穗粒数和产量较对照显著提高,反义trxs基因对小麦籽粒淀粉品质有一定的正效应。4个转基因株系的淀粉含量、支链淀粉含量、峰值黏度、低谷黏度、最终黏度均显著提高,直/支比降低。反义trxs基因对小麦籽粒蛋白质品质的影响因品种类型而异,其中弱筋小麦的总蛋白、清蛋白、球蛋白、谷蛋白含量显著减少,醇溶蛋白含量显著增加,面粉的形成时间和稳定时间降低。强筋小麦除清蛋白、醇溶蛋白、谷蛋白含量减少外,面团的粉质和拉伸参数变化不明显。上述结果说明,反义trxs基因导入有利于两种品质类型小麦籽粒淀粉品质的改善,并在一定程度上改善了弱筋小麦的烘焙品质。

关键词: 小麦, 反义trxs基因, 产量, 加工品质

Abstract: Thioredoxin h (Trxh) is a small protein catalyzing thiol-disulfide interchange, which is involved in many processes, such as activation or deactivation of enzymes and enzyme inhibition and germination. Wheat pre-harvest sprouting is caused by a series of hydrolyses, in which α-amylase plays a key role. The anti-trxs gene has been transferred into wheat (Triticum aestivum L.) cultivars “Yumai 18” and “Yumai 34” since 2003 to decrease Trxhreductive capability and α-amylase activity in wheat seed. From the T4 generations, two transgenic lines, TY18 and TY34 were obtained. To investigate the effects of anti-sense thioredoxin s on grain yield and quality properties, TY18 and TY34 were tested in field experiments in 2007–2009 growing seasons with comparisons to their cultivars Yumai 18 (weak gluten) and Yumai 34 (strong gluten ). The result showed that the grain yield and quality properties of both lines were greatly affected. Compared with the wild controls, grain number per spike, grain yield and the starch quality in seeds of the transgenic lines were significantly promoted. The total starch content, amylopectin content, peak viscosity, trough viscosity, and final viscosity were significantly increased in transgenic lines, and the ratio amylase-to-amylopectin reduced, accordingly. The effects of transferring gene on protein quality were different in the two cultivars. The contents of total protein, albumin, globulin, and glutelin decreased significantly and the contents of gliadin increased significantly in the two transgenic lines of TY18. The development time and stability time of flour decreased significantly. However, these protein quality indexes had no significant differences between transgenic lines and controls, except contents of albumin, gliadin, and glutelin, which were decreased in transgenic lines TY34. Therefore, the anti-trxs gene transferred into wheat improved the starch quality of both wheat cultivars and the braking quality of weak-gluten cultivar.

Key words: Wheat, Anti-sense thioredoxin s gene, Yield, Processing quality

[1]Xiao S-H(肖世和), Yan C-S(闫长生), Zhang H-P(张海萍), Sun G-Z(孙果忠). Study on Wheat Pre-harvest Sprouting (小麦穗发芽研究). Beijing: China Agricultural Science and Technology Press, 2004. pp 199–218 (in Chinese)
[2]Jia J-Z(贾继增), Zhang Z-B(张正斌), Devos K, Gale M D. RFLP mapping of wheat chromosome 21 locus analysis of genetic di-    versity. Sci China (Ser C)(中国科学×C辑), 2001, 31(1): 13–21 (in Chinese)
[3]Hou W-S(侯文胜), Guo S-D(郭三堆), Lu M(路明). Gene transformation for plant improvement. Biotechnol Inf (生物技术通报), 2002, (1): 10–15 (in Chinese with English abstract)
[4]Joudrier P, Gautier M, Lamotte F D, Kobrehel K. The thioredoxin h system: potential applications. Biotechnol Adv, 2005, 23: 81– 85
[5]Kobrehel K, Yee B C, Buchanan B B. Role of the NADP/thioredoxin system in reduction of α-amylase and trypsin inhibitor proteins. J Biol Chem, 1991, 266: 16135–16140
[6]Kobrehel K, Wong J H, Balogh A, Kiss F, Yee B C, Buchanan B B. Specific reduction of wheat storage proteins by thioredoxin h. Plant Physiol, 1992, 99: 919–924
[7]Ballicora M A, Frueauf J B, Fu Y, Schurmann P, Preiss J. Activation of the potato tuber ADP-glucose pyrophosphatase by thioredoxins. J Biol Chem, 1999, 275: 1315–1320
[8]Wong J H, Kobrehel K, Nimbona C, Yee B C, Balogh A, Kiss F. Thioredoxin and bread wheat proteins. Cereal Chem, 1993, 70: 113–114
[9]Li X M, Nield J, Hayman D, Langredge P. Cloning a putative self-incompatibility gene from the pollen of the grass Phalaris coerulescens. Plant Cell, 1994, 6: 1923–1932
[10]Li X M, Nield J, Hayman D, Langridge P. A self-fertile mutant of Phalaris produces an S protein with reduced thioredoxin activity. Plant J, 1996, 10: 505–513
[11]Yin J(尹钧), Ren J-P(任江萍), Song L(宋丽), Li L(李磊), Shi X-Z(师学珍), Guo X-Y(郭向云). Regeneration culture from bombarded immature embryos of wheat and transgenic plant. Acta Bot Boreal-Occident Sin (西北植物学报), 2003, 23(9): 1565–1570 (in Chinese with English abstract)
[12]Liu L(刘雷), Yin J(尹钧), Ren J-P(任江萍), Han J-F(韩锦峰). Effects of antisense trxs on germination of transgenic wheat seeds. Acta Agron Sin (作物学报), 2004, 30(8): 801–805 (in Chinese with English abstract)
[13]Ren J-P(任江萍), Guo J-J(郭建军), Wang X-G(王新国), Li L(李磊), Yin J(尹钧). Inheriting analysis of anti-trxs gene and pre-harvest sprouting resistant characteristic in transgenic line 01TY18. Acta Bot Boreal-Occident Sin (西北植物学报), 2008, 28(6): 941–945 (in Chinese with English abstract)
[14]He Z-F(何照范). Analysis Techniques for Grain Quality in Ce- reals and Oils (粮油籽粒品质及其分析技术). Beijing: China  Agriculture Press 1985. pp 131–133 (in Chinese)
[15]Serrato A J, Cejudo F J. Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta, 2003, 217: 392–399
[16]Zhang C-Q(张春庆), Li Q-Q(李晴祺). A study on the main quality characters influencing the steamed bread processing quality of T. aestivum. Sci Agric Sin (中国农业科学), 1993, 26(2): 39–46 (in Chinese with English abstract)
[17]Yao D-N(姚大年), Li B-Y(李保云), Zhu J-B(朱金宝). Study on main starch properties an d predictive indexes of noodle quality in common wheat (Triticum aestivum). Sci Agric Sin (中国农业科学), 1999, 32(6): 84-88 (in Chinese with English abstract)
[18]Zhang G-Q(张国权), Wei Y-M(魏益民), Ou-Yang S-H(欧阳韶辉), Xi M-L(席美丽), Hu X-Z(胡新中), Sietz W. Noodle quality characters of wheat varieties. J Chin Cereals Oils Assoc (中国粮油学报), 2000, 15(3): 5–7 (in Chinese with English abstract)
[19]Zeng M, Morris C F, Batey I L, Wrigley C W, Zeng M. Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chem, 1997, 74: 63–71
[20]Guo H-X(郭红祥), Yin J(尹钧), Ren J-P(任江萍), Wang Z-Y(王振云). Effects of antisense trxs on starch hydrolases of wheat (Triticum aestivum L.) seeds in germination. Plant Physiol Commun (植物生理学通讯), 2007, 43(2): 273–276 (in Chinese with English abstract)
[21]Li Z-X(李志西), Wei Y-M(魏益民), Zhang J-G(张建国), Zhang G-Q(张国权). Study on the effects of wheat protein components on dough properties and baking quality. J Chin Cereals Oils Assoc (中国粮油学报), 1998, 13(3): 1–5 (in Chinese with English abstract)
[22]Ma C-X(马传喜), Wu Z-S(吴兆苏). Effect of variation of protein fractions and HMW glutenin subunits on SDS sedimentation volume in wheat varieties. Acta Agron Sin (作物学报), 1993, 19(6): 562–567 (in Chinese with English abstract)
[23]Xu Z-F(徐兆飞), Zhang H-Y(张惠叶), Zhang D-Y(张定一). Wheat Quality and Improvement (小麦品质及其改良). Beijing: Meteorological Press, 1999. pp 22–26 (in Chinese)
[24]Li Y-Q(李永强), Zhai H-M(翟红梅), Tian J-C(田纪春). Effect of protein and starch contents on wheat dough rheological properties. Acta Agron Sin (作物学报), 2007, 33(6): 937–941 (in Chinese with English abstract)
[25]Grasp W, Carpenter H C, Anderssen R S. Modelling the developmental rheology of wheat flour dough using extension tests. J Cereal Sci, 2000, 31: 1–13
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!