欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (12): 2045-2054.doi: 10.3724/SP.J.1006.2010.02045

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

YM型小麦温敏雄性不育系不育基因的QTL定位

周菊红1,李轲1,何蓓如1,胡银岗1,2,3,*   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100; 2 国家小麦改良中心杨凌分中心, 陕西杨凌 712100; 3 陕西省农业分子生物学重点实验室, 陕西杨凌 712100
  • 收稿日期:2010-04-12 修回日期:2010-07-28 出版日期:2010-12-12 网络出版日期:2010-10-14
  • 通讯作者: 胡银岗,E-mail:huyingang@yahoo.com.cn
  • 基金资助:

    本研究由教育部重点科研项目(105166)和教育部春晖计划启动项目(Z2005-2-7104)资助。

Mapping QTLs for Male Sterile Gene in YM-Type Thermo-Sensitive Male Sterile Line of Wheat

ZHOU Ju-Hong1,LI Ke1,HE Bei-Ru1,HU Yin-Gang1,2,3,*   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 Yangling Branch of China National Wheat Improvement Center,  Yangling 712100, China; 3 Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China
  • Received:2010-04-12 Revised:2010-07-28 Published:2010-12-12 Published online:2010-10-14
  • Contact: 胡银岗,E-mail:huyingang@yahoo.com.cn

摘要: YM型小麦温敏雄性不育系的不育基因被定位在1Bs染色体片段上, 但已发现的相邻分子标记与该基因的遗传距离较大, 达10 cM以上。为寻找与该基因连锁更紧密的分子标记, 以YM型温敏雄性不育系ATM3314与恢复系中国春杂交的F2代200株为作图群体, 从1Bs的22个SSR引物中筛选出5个在亲本和F2代中分离的SSR引物, 构建了1个包含5个标记的1Bs局部遗传连锁图谱。结合F2代个体的育性调查, 采用复合区间作图法在YM型温敏雄性不育系的1Bs染色体上检测到不育基因的1个主效QTLrfv1-1和1个微效QTLrfv1-2rfv1-1位于SSR标记Xgwm18和Xwmc406之间, 与两标记的遗传距离分别为6.0 cM和4.6 cM, LOD值为8.80, 加性效应23.87, 显性效应10.44, 可解释表型变异的23.91%; rfv1-2位于Xwmc406和Xbarc8之间, 与两标记的遗传距离分别为4.0 cM和3.4 cM, LOD值为3.10, 加性效应17.59, 显性效应5.99, 可解释表型变异的7.78%。本研究初步定位了YM型小麦温敏雄性不育系1Bs染色体片段上不育基因的QTL, 为进一步准确定位该基因奠定了基础。

关键词: 小麦, 温敏雄性不育基因, SSR标记, QTL定位

Abstract: The sterile gene of YM-type thermo-sensitive male sterile wheat (Triticum aestivum L.) line has been mapped on 1Bs chromosome with genetic distance to adjacent molecular markers more than 10 cM. To further locate this thermo-sensitive male sterile gene, we constructed a mapping population with 200 F2 plants from the cross between ATM3314 and restorer line Chinese Spring. Twenty-two simple sequence repeat (SSR) markers distributing evenly on 1Bs were screened between the parents and the male sterile and fertile bulks, and five markers showed polymorphism. These markers were then tested in the F2 population. A 1Bs partial linkage map with the five SSR markers was obtained and QTLs for the male sterility were detected using composite interval mapping method. One major QTL and one minor QTL were detected, which were designated as rfv1-1 and rfv1-2, respectively. QTL rfv1-1 was located between the SSR markers Xgwm18 and Xwmc406 on chromosome 1Bs with genetic distances of 6.0 cM and 4.6 cM, respectively. The LOD value for this locus was 8.80, and the gene effects were 23.87 for additive effect and 10.44 for dominant effect. This QTL explained 23.91% of the phenotypic variation. QTL rfv1-2 was mapped between markers Xwmc406and Xbarc8 with genetic distances of 4.0 cM and 3.4 cM, respectively. The LOD value of this QTL was 3.10. This locus had additive effect of 17.59 and dominant effect of 5.99, and explained 7.78% of the phenotypic variation. These results are propitious for fine mapping and positional cloning of this male sterile gene.

Key words: Wheat, Thermo-sensitive male sterile gene, SSR maker, QTL mapping

[1]Cao S-H(曹双河), Guo X-L(郭小丽), Liu D-C(刘冬成), Zhang X-Q(张相岐), Zhang A-M(张爱民). Preliminary gene-mapping of photoperiod-temperature sensitive genic male sterility in wheat (Triticum aestivum L.). Acta Genet Sin (遗传学报), 2004, 31(3): 293-298 (in Chinese with English abstract)
[2]Ma L-J(马翎健), He B-R(何蓓如), Song X-Y(宋喜悦), Hu Y-G(胡银岗). Heredity and RAPD markers analysis of wheat photoperiod-sensitive male sterile gene. Acta Agron Sin (作物学报), 2004, 30(9): 912-915 (in Chinese with English abstract)
[3]Jiang H-M(江红梅), Zhang L-P(张立平). Advanced heredity research on photoperiod-temperature male sterility in wheat. Seed (种子), 2009, (5): 56-59 (in Chinese)
[4]Kihara H. Substitution of nucleus and its effects on genome manifestations. Cytologia, 1951, 16: 177-193
[5]Sasakuma T, Ohtsuka L. Cytoplasmic effects of Aegilops species having D genome in wheat: I. Cytoplasmic differentiation among five species regarding pistillody induction. Seiken Ziho, 1979, 27-28, 59-65
[6]He J-M(何觉民), Dai J-T(戴君惕), Zou Y-B(邹应斌), Zhou M-L(周美兰), Zhang H-Q(张海青), Liu X-L(刘雄伦). Studies on two-line hybrid wheat: I. Discovery, development and utilization potential of male sterile wheat based on ecological environments. Hunan Agric Sci (湖南农业科学), 1992, (5): 1-3 (in Chinese)
[7]Tan C-H(谭昌华), Yu G-Q(余国东), Yang P-F(杨沛丰), Zhang Z-H(张宗华), Pan Y(潘鹰), Zheng J(郑坚). Preliminary study on sterility of thermo-photoperiod-sensitive male sterile wheat in Chongqing. Southwest China J Agric Sci (西南农业学报), 1992, 5(1): 1-4 (in Chinese with English abstract)
[8]Fu D-X(傅大雄), Ruan R-W(阮仁武). Discovery of photoperiod and temperature sensitive character of KM-type male sterile wheat lines and breeding of two-line hybrid wheat. Southwest China J Agric Sci (西南农业学报), 1993, 6(1): 117-118 (in Chinese)
[9]Zhao C-P(赵昌平), Wang X(王新), Zhang F-Y(张风延), Ye Z-J(叶志杰), Dai H-J(戴惠君). Progress of hybrid wheat research and developing hybrid wheat using thermo-sensitive male sterile lines. Beijing Agric Sci (北京农业科学), 1999, 17(2): 3-5 (in Chinese)
[10]Rong D-F(荣德福), Cao W-M(曹卫民). The types of photoperiod-thermo-sensitive male sterile wheat and breeding for long- day and high-temperature sensitive male sterile wheat line. Triticeae Crops (麦类作物), 1999, 19(1): 20-24 (in Chinese)
[11]He B-R(何蓓如). A breeding method for breeding thermo-sensi- tive male sterile wheat line adapted to Huang-Huai region of China. Chinese patent: ZL00105488.0. 2004-03-10 (in Chinese)
[12]Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137-1143
[13]Kojima T, Tsujimoto H, Ogihara Y. High resolution RFLP mapping of the fertility restoration (Rf3) gene against Triticum timopheevi cytoplasm located on chromosome 1BS of common wheat. Genes Genet Syt, 1997, 72: 353-359
[14]Guan R-X(关荣霞), Guo X-L(郭小丽), Liu D-C(刘冬成), Cao S-H(曹双河), Zhang A-M(张爱民). Analysis of the fertility restoring gene Rf6 in T. timopheevii cytoplasimic male sterility of wheat with ISSR markers. Sci Agric Sin (中国农业科学), 2002, 35(11): 1297-1301 (in Chinese with English abstract)
[15]Zhang C(张萃), Wang H-Y(王宏英), Shen Y-Z(沈银柱), Zhao B-C(赵宝存), Zhu Z-G(朱正歌), Huang Z-J(黄占景). Location of the fertility restorer gene for T-type CMS wheat by microsatellite marker. Acta Genet Sin (遗传学报), 2003, 30(5): 295-264 (in Chinese with English abstract)
[16]Liu B-S(刘保申), Sun Q-X(孙其信), Gao Q-R(高庆荣), Sun L-Z(孙兰珍), Xie C-J(解超杰), Li C-Y(李传友), Ni Z-F(倪中福), Dou B-D(窦秉德), Wei Y-L(魏艳玲). Mapping of fertility restoring gene for Aegilops Kotschy cytoplasmic male sterility in wheat using SSR markers. Sci Agric Sin (中国农业科学), 2002 , 35(4) : 354-358 (in Chinese with English abstract)
[17]Liu B S, Sun Q X, Sun L Z, Gao Q R, Xie C J, Dou B-D, Ni Z F, Wei Y L, Zhang Y C. RAPD and ISSR markers of fertility restoring gene for Aegilops Kotschyi cytoplasmic male sterility in wheat. Acta Bot Sin, 2002, 44: 446-450
[18]Shi Y-Q(石运庆), Mou Q-H(牟秋焕), Li P(李鹏), Liu B-S(刘保申). Mapping of fertility restoring gene for Aegilops ventericosa cytoplasmic male sterility in wheat using SSR markers. Shandong Agric Sci (山东农业科学), 2005, (3): 3-5 (in Chinese with English abstract)
[19]Xing Q H, Ru Z G, Zhou C J, Xue X, Liang G Y, Yang D E. Genetic analysis, molecular tagging and mapping of the thermo- sensitive genic male sterile gene (wtmsl) in wheat. Theor Appl Genet, 2003, 107: 1500-1504
[20]He B-R(何蓓如), Hu Y-G(胡银岗), Song X-Y(宋喜悦), Ma L-J(马翎健), Li H-B(李宏斌), Dong P-H(董普辉), Yu L(于玲). Preliminary study on the fertility conversion of thermo-sensitive male sterile wheat line YM3314 with the chromosome segments of T. macha. J Triticeae Crops (麦类作物学报), 2008, 28(2): 206-209 (in Chinese with English abstract)
[21]Dong P-H(董普辉). Study on the Chromosomal Location of the T-type Restorer Gene and Linkage Analysis between It and the K- type Male Sterile Gene in T. macha. PhD Dissertation of Northwest A&F University, 2005 (in Chinese with English abstract)
[22]Dong P-H(董普辉), He B-R(何蓓如), Song X-Y(宋喜悦), Hu Y-G(胡银岗), Ma L-J(马翎健), Yu L(于玲), Li H-B(李宏斌). Chromosomal location of T-type fertility restoring gene derived from T. macha var. subletschchumicum. J Triticeae Crops (麦类作物学报), 2006, 26(1): 13-16 (in Chinese with English abstract)
[23]Dong P-H(董普辉), Hu Y-G(胡银岗), Lin F-Y(林凡云), Song G-Q(宋国琦), Song X-Y(宋喜悦), Ma L-J(马翎健), Li H-B(李宏斌), He B-R(何蓓如). SSR markers analysis of T-type restorer gene Rf3 and K-type male sterile gene rfv1 derived from Triticum macha L. J Triticeae Crops (麦类作物学报), 2009, 29(5): 766-769 (in Chinese with English abstract)
[24]Aldrich C. CTAB DNA extraction from plant tissues. Plant Mol Biol Rep, 1993, 11: 128-141
[25]Somers D J, Isaac P, Edwards K. A high-density wheat micro satellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114
[26]Li H-Y(李会勇), Wang T-Y(王天宇), Li Y(黎裕), Shi Y-S(石云素), Song Y-C(宋燕春), Lu P(陆平). Application of the TP-M13 automated fluorescent-labeled system of SSR genotyping in sorghum. J Plant Genet Resour (植物遗传资源学报), 2005, 6(1): 68-70 (in Chinese with English abstract)
[27]Liu Z-Z(刘志斋), Wang T-Y(王天宇), Li Y(黎裕). TP-M13-SSR technique and its applications in the analysis of genetic diversity in maize. J Maize Sci (玉米科学), 2007, 15(6): 10-15 (in Chinese with English abstract)
[28]Lincoln S E, Daly M J, Lander E S. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. In: A Whitehead Institute for Biomedical Research Technical Report, 3rd edn. Cambridge, USA: Whitehead Institute for Biomedical Research, 1993
[29]Liu R-H(刘仁虎), Meng J-L(孟金陵). Map Draw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)
[30]Wang S, Basten C J, Zeng Z B. Windows QTL. Cartographer 2.5 Department of Statistics. Carolina: North Carolina State University, 2006
[31]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epitasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153-160
[32]Tian Z-M(田再民), Zhang L-P(张立平), Sun Q-L(孙庆林), Shan F-H(单福华), Tian Z-H(田自华). Methodology and advances in QTL of significant agronomic traits in wheat. J Inner Mongolia Agric Univ (Nat Sci Edn)(内蒙古农业大学学报·自然科学版), 2007, 28(4): 243-247 (in Chinese with English abstract)
[33]Song X-Y(宋喜悦), Dong P-H(董普辉), Hu Y-G(胡银岗), Ma L-J(马翎健), Li H-B(李宏斌), He B-R(何蓓如). Linkage relationship between T-type restorer gene Rf-3 and K-type male ste- rile gene rfv-1 in Triticum macha L. Acta Agron Sin (作物学报), 2008, 34(10): 1757-1761 (in Chinese with English abstract)
[34]Gu H(顾慧), Qi C-K(戚存扣). QTL analysis of lodging resistance in Brassica napus L. Jiangsu J Agric Sci (江苏农业学报), 2009, 25(3): 484-489 (in Chinese with English abstract)
[35]Liang F-S(梁凤山), Wang B(王斌). Heredity and gene mapping of male sterility in wheat. Hereditas (遗传), 2003, 25(4): 461- 465 (in Chinese with English abstract)
[36]Hu Y-G(胡银岗), Ma L-J(马翎健), Song X-Y(宋喜悦), Fang P(方鹏), He B-R(何蓓如), Zhang W-J(张文俊). Molecular markers of the fertility genes Rf-3 and rfk-1 in the 1BS chromosome of T. spelta. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn)(西北农林科技大学·自然科学版), 2004, 32(1): 56-62 (in Chinese with English abstract)
[37]Guo R-X(郭瑞星). Genetic Analysis and Molecular Mapping of the Thermo-Photoperiod Sensitive Genic Male Sterile Genes in Wheat Male Sterile Line 337S (Triticum aestivum L.). PhD Dissertation of Huazhong Agricultural University, 2005 (in Chinese with English abstract)
[38]Guo R X, Dong D F, Tan Z B, Rong D F, Li C D. Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theor Appl Genet, 2006, 112: 1271-1276
[39]Chi H-F(池慧芳). QTL Mapping for Photoperiod-Thermo Sensitive Genic Male Sterility and Red-auricle in Wheat. MS Dissertation of Inner Mongolia Agricultural University, 2008 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!