作物学报 ›› 2010, Vol. 36 ›› Issue (3): 526-532.doi: 10.3724/SP.J.1006.2010.00526
王明霞1,高翔1,2,*,陈其皎1,2,董剑1,2,赵万春1,2,李艳亮1,李敏1,陈瑞佶1,庞红喜1,2,李哲清1,2
WANG Ming-Xia1,GAO Xiang1,2,*,CHEN Qi-Jiao1,2,DONG Jian1,2,ZHAO Wan-Chun1,2, LI Yan-Liang1,LI Min1,CHEN Rui-Ji1,PANG Hong-Xi1,2,LI zhe-Qing1,2,LIU Jun1,2
摘要:
[1] Bushuk W. Wheat cultivar identification by gliadin electrophoregrams. Can J Plant Sci, 1978, 58: 505−515 [2] Harbred N P, Bartels D, Thompson R D. Analysis of the gliadin multigene loci in bread wheat using nulisomic tetrasomic lines. Mol Gen Genet, 1985, 198: 234−242 [3] Wrifley C W, Robinson P J, Williams W T. Association between individual gliadin proteins and quality, agronomic and morphological attributes of wheat cultivars. Aust Agric Res, 1982, 33: 409−418 [4] Redaelli R. Two-dimensional mapping of gliadins using biotypes and null mutants of common wheat cultivar Saratovskaya 29. Hereditas, 1994, 121: 131−137 [5] Peter R, Nigel G. Cereal seed storage proteins: structures properties and role in grain utilization. J Exp Pathol, 2002, 53: 370 [6] Yan Y-M(晏月明), Ru Y-Y(茹岩岩), Yu J-Z(余建中), Liu G-T(刘广田), Prodanovic S. Analysis of gliadin allele composition at Gli-1 and Gli-2 loci in Chinese wheat cultivars. J Agric Biotechnol (农业生物技术学报), 2000, 6(1): 23−27 (in Chinese with English abstract) [7] Branlard G, Dardevet M. Diversity of grain proteins and bread wheat quality I correlation between gliadin bands and flour quality characteristics. Cereal Sci, 1985,13: 329−343 [8] Payne P I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Genet, 1987, 38: 141−153 [9] Xu Z-F (徐兆飞), Zhang H-Y (张惠叶), Zhang D-Y (张定一). Wheat Quality and Its Improvement (小麦品质及其改良). Beijing: Meteorological Press, 2000. pp 47−51 (in Chinese) [10] Murray H G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucl Acids Res, 1980, 8: 4321−4325 [11] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596−1599 [12] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucl Acids Res, 1999, 27: 297−300 [13] Crooks G E, Hon G, Chandonia J M, Brenner S E. WebLogo: A sequence logo generator. Genome Res, 2004, 14:1188−1190 [14] Schneider T D, Stephens R M. Sequence Logos: A new way to display consensus sequences. Nucl Acids Res, 1990, 18: 6097−6100 [15] Bartels D, Thompson R D. The characterization of cDNA clones coding for wheat storage proteins. Nucl Acids Res, 1983, 11: 2961−2977 [16] Kasarda D D, Okita T W, Bernardin J E. Nucleic acid and amino acid sequences of α-type gliadins from wheat. Proc Natl Acad Sci, 1984, 81: 4712-4716 [17] Jackson E A, Morel M H, T Sontag-Strohm. Proposal for combination the classification system of alleles of Gli-1 and Gli-3 loci in bread wheat. Genet Breed, 1996, 50: 321-336 [18] Anderson O D, Hisa C C, Torres V. The wheat γ-gliadin genes: characterization of ten new sequences and further understanding of γ-gliadin gene family structure. Theor Appl Genet, 2001, 103: 323−330 [19] Yan Y-M(晏月明), Liu G-T(刘广田), Prodanovic S, Zoric D. Genetic and quality improvement on wheat gliadin. Tritical Crops(麦类作物), 1998, 18(1): 1−4 (in Chinese with English abstract) [20] Sun C-X(孙崇荣), Huang W-D(黄伟达). Expression regulation of storage genes in seeds of wheat. Commun Plant Physiol (植物生理学通讯), 1995, 31(1): 71−73 (in Chinese) [21] Thomas M S, Flavell R B. Identification of an enhancer element for the endosperm specific expression of high molecular weight glutenin. Plant Cell, 1990, 2: 1171−1180 [22] Vellanoveth R L, Okita T W. Analysis of nuclear proteins interacting with a wheat gliadin seed storage protein gene. Plant Mol Biol, 1993, 22: 25−41 [23] Gupta R B, MacRcitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3, Gli-1 of common wheat: II. Biochemical basis of the allelic effects on dough properties. J Cereal Sic, 1994, 19: 19−29 [24] Vensel W H, Tarr G E, Kasarda D D. C-terminal and internal sequence of a low molecular weight (LMW-s) type of glutenin subunit. Cereal Chem, 1995, 72: 356−359 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[3] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[4] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[5] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[6] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[7] | 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862. |
[8] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
[9] | 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502. |
[10] | 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861. |
[11] | 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213. |
[12] | 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840. |
[13] | 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594. |
[14] | 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能 分析[J]. 作物学报, 2018, 44(7): 1021-1031. |
[15] | 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801. |
|