欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 517-525.doi: 10.3724/SP.J.1006.2010.00517

• 研究简报 • 上一篇    下一篇

甘蓝和白菜紫色酸性磷酸酶17基因家族的克隆和比较分析

卢坤1,2,张凯1,2,**,柴友荣1,2,陆俊杏1,2,唐章林1,2,李加纳1,2,*   

  1. 1西南大学农学与生物科技学院,重庆400716;2重庆市油菜工程技术研究中心,重庆400716
  • 收稿日期:2009-09-18 修回日期:2009-12-08 出版日期:2010-03-12 网络出版日期:2010-01-22
  • 通讯作者: 李加纳, E-mail: ljn1950@swu.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z1E6和2008AA10Z147),引进国际先进农业科学技术计划(948计划)项目(2006-Q04)和中国博士后科学基金资助项目(20090460717)资助。

Cloning and Comparative Analysis of PURPLE ACID PHOSPHATASE 17 Gene Families in Brassica oleracea and Brassica rapa

LU Kun1,2,ZHANG Kai1,2,**,CHAI You-Rong1,2,LU Jun-Xing1,2,TANG Zhang-Lin1,2,*   

  1. 1 College of Agronomy and Life Sciences, Southwest University, Chongqing 400716, China; 2 Chongqing Rapeseed Technology Research Center, Chongqing 400716, China
  • Received:2009-09-18 Revised:2009-12-08 Published:2010-03-12 Published online:2010-01-22
  • Contact: LI Jia-Na, E-mail: ljn1950@swu.edu.cn

摘要:

从甘蓝和白菜中分别克隆到2个PAP17, 根据序列相似性, 将PAP17分为类型I (BoPAP17-1BrPAP17-1)和类型II (BoPAP17-2BrPAP17-2)。Southern杂交表明, 白菜和甘蓝中均只存在2个PAP17成员, 与克隆结果吻合。系统发育和分子进化分析表明, PAP17基因家族受纯化选择, 编码低分子量PAP蛋白。荧光定量PCR结果表明, PAP17在所检测的9个组织器官中均有表达, 尤以花和蕾中的表达量特别高, 种子中也有一定程度的表达, 表明其与体内储备态磷的动用有关, 尤其在花和蕾的发育阶段。磷饥饿诱导表达结果表明, 除BrPAP17-2在幼苗叶片中表达受抑制外, BrPAP17BoPAP17在幼苗根部和叶片中均受磷饥饿诱导, 表达量先降后升, 诱导4 d或8 d后达到峰值; 恢复供磷4 d后, 表达量迅速降低至基础表达水平以下。与幼苗叶片相比, 白菜和甘蓝幼苗根部的PAP17磷饥饿诱导表达似乎更为强烈。这些结果表明PAP17在白菜和甘蓝根部可能参与了根外磷的活化与吸收及无机磷由根部向其他组织器官的转运。

关键词: 白菜, 甘蓝, 紫色酸性磷酸酶, 基因家族, 磷饥饿

Abstract:

Two PAP17 genes were cloned from parent species of Brassica napus, B. oleracea and B. rapa, respectively. According to sequence similarity, PAP17 genes could be divided into two types, type I (BoPAP17-1 and BrPAP17-1) and type II (BoPAP17-2 and BrPAP17-2). Southern hybridization resulted in two bands both in B. oleracea and B. rapa, this is accordance with former cloning results. Phytogenetic and molecular evolution analysis indicated that PAP17 genes in Brassica species underwent purifying selection, and their deduced proteins are typical low molecular weight PAP proteins. Expression patterns of BoPAP17 and BrPAP17 genes were assayed by fluorescent quantitative PCR. The results revealed that PAP17 genes expressed in all nine tested tissues and organs, with the extremely high expression in flower and bud, and certain expression in seeds at different stages, implying these PAP17 genes most likely mobilize phosphorus reserves in plants, particularly during flower and bud development stages. Under phosphate starvation conditions, expression of BrPAP17-2 in seedling leaf was restrained, while that of BrPAP17 and BoPAP17 in seedling root and leaf was induced, the expression levels declined in the first 24 hours, and then continuously increased with the maximal levels between four days and eight days after treatment. After four days of Pi-resupply, their expression declined below un-induced basal levels. In comparison with seedling leaf, it seems that BrPAP17 and BoPAP17 showed stronger phosphate starvation induced expression in seedling root. These results thus suggested that PAP17 genes in B. oleracea and B. rapa may be involved in external phosphorus assimilation and transferring inorganic phosphate from root to other tissues or organs.

Key words: Brassica rapa, brassica oleracea, Purple acid phosphatase, Gene family, Phosphate starvation


[1]         Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant, 1994, 90: 791–800


[2]         Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D. Purple acid phosphatases of Arabidopsis thaliana-comparative analysis and differential regulation by phosphate deprivation. J Biol Chem, 2002, 277: 27772–27781


[3]         Lu K(卢坤). Screening of Phosphorus-Efficient Brassica napus Genotype, and Cloning, Expression and Molecular Evolution of Brassica PAP12 and PAP17 Gene Families. PhD dissertation of Southwest University, 2008 (in Chinese with English abstract)


[4]         Bozzo G G, Dunn E L, Plaxton W C. Differential synthesis of phosphate-starvation inducible purple acid phosphatase isozymes in tomato (Lycopersicon esculentum) suspension cells and seedlings. Plant Cell Environ, 2006, 29: 303–313


[5]         del Pozo J C, Allona I, Rubio V, Leyva A, de la Pena A, Aragoncillo C, Paz-Ares J. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant J, 1999, 19: 579–589


[6]         Kuang R, Chan K H, Yeung E, Lim B L. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in Arabidopsis. Plant Physiol, 2009, 151: 199–209


[7]         Lu K, Chai Y R, Zhang K, Wang R, Chen L, Lei B, Lu J, Xu X F, Li J N. Cloning and characterization of phosphorus starvation inducible Brassica napus PURPLE ACID PHOSPHATASE 12 gene family, and imprinting of a recently evolved MITE-minisatellite twin structure. Theor Appl Genet, 2008, 117: 963–975


[8]         Lu K, Li J N, Zhong W R, Zhang K, Fu F Y, Chai Y R. Isolation, characterization and phosphate-starvation inducible expression of potential Brassica napus PURPLE ACID PHOSPHATASE 17 (BnPAP17) gene family. Bot Stud, 2008, 49: 199–213


[9]         Wang X, Wang Y, Tian J, Lim B L, Yan X, Liao H. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol, 2009, 151: 233–240


[10]      Xiao K, Harrison M, Wang Z Y. Cloning and characterization of a novel purple acid phosphatase gene (MtPAP1) from Medicago truncatula Barrel Medic. J Integr Plant Biol, 2006, 48: 204–211


[11]      Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018


[12]      Comeron J M. K-Estimator: Calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics, 1999, 15: 763–764


[13]      Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596


[14]      Kozak M. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol, 1987, 7: 3438–3445


[15]      Kowalski S P, Lan T H, Feldmann K A, Paterson A H. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics, 1994, 138: 499–510


[16]      Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem, 2001, 39: 253–262


[17]      Yang Y W, Lai K N, Tai P Y, Ma D P, Li W H. Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis and allied genera based on the Internal transcribed spacer region of 18S–25S rDNA. Mol Phylogenet Evol, 1999, 13: 455–462


[18]      Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome, 2003, 46: 291–303
Zhu H, Qian W, Lu X, Li D, Liu X, Liu K, Wang D. Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower. Plant Mol Biol, 2005, 59: 581–594
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[9] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[12] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[13] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!