欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 74-78.doi: 10.3724/SP.J.1006.2011.00074

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

木薯基因组SSR和EST-SSR在麻疯树和橡胶树中的通用性分析

文明富,陈新,王海燕,卢诚,王文泉*   

  1. 中国热带农业科学院热带生物技术研究所,海南海口 571101
  • 收稿日期:2010-05-04 修回日期:2010-08-01 出版日期:2011-01-12 网络出版日期:2010-10-09
  • 通讯作者: 王文泉, E-mail: wquanw@hainan.net, Tel: 0898-66894533
  • 基金资助:

    本研究由国际合作项目基金(2008DFA32030)和中央级公益性科研院所基本科研业务费(ITBBZX0843)资助。

Transferability Analysis of Cassava EST-SSR and Genomic-SSR Markers in Jatropha and Rubber Tree

WEN Ming-Fu,CHEN Xin,WANG Hai-Yan,LU Cheng,WANG Wen-Quan*   

  1. Institute of Tropical Bioscience & Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
  • Received:2010-05-04 Revised:2010-08-01 Published:2011-01-12 Published online:2010-10-09
  • Contact: WANG Wen-Quan,E-mail:wquanw@hainan.net,Tel:0898-66894533

摘要: 利用木薯的419对EST-SSR引物和182对基因组SSR引物在5个麻疯树品系和2个橡胶树品系中进行通用性分析。结果显示,木薯EST-SSR在麻疯树和橡胶树中的通用性比例分别为55.85%和38.90%,而木薯基因组SSR在麻疯树和橡胶树中的通用性比例分别为37.36%和26.37%。由此推测,EST-SSR的通用性高于基因组SSR。此外,木薯EST-SSR和基因组SSR的通用性在麻疯树中高于在橡胶树中。本研究发掘的通用性SSR引物可以用于木薯、麻疯树和橡胶树间的比较作图、基因发掘和QTL定位研究。

关键词: 麻疯树, 橡胶树, 通用性, EST-SSR, 基因组SSR

Abstract: Euphorbiaceae family includes abundant economic species, such as rubber tree, cassava, castor bean and Jatropha. Cassava (Manihot esculenta Crantz) ranks in the sixth food crop in the world. In China, cassava is also an important tropical economic crop. The genomic-SSRs derived from cassava genome, and EST-SSRs derived from expressed sequence tags (ESTs). In this study, the transferability of 419 pairs of EST-SSR primer and 182 pairs of genomic-SSR primer from cassava was tested in five Jatropha lines and two rubber tree lines. The result showed that the transferability rate of cassava EST-SSR in Jatropha and rubber tree was 55.85% and 38.90%, and the transferability rate of cassava genomic-SSR in Jatropha and rubber tree was 37.36% and 26.37%, respectively. The transferability EST-SSR was higher for cssava than for genomic-SSR. Meanwhile, the transferability of cassava EST-SSR and genomic-SSR was higher in Jatropha than in rubber tree. These results suggested that the cassava SSR can be used for comparative mapping, gene tagging and QTL mapping among cassava, Jatropha and rubber tree.

Key words: Jatropha, Rubber tree, Transferability, EST-SSR, Genomic-SSR

[1]Qiu H-X(丘华兴). Flora of China (中国植物志), Vol. 44. Beijing: Science Press, 1996 (in Chinese)
[2]Chao S, Sharp P J, Worland A J, Warham E J, Koebner R M D, Gale M D. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet, 1989, 78: 495–504
[3]Mackill D J, Zhang Z, Redona E D, Colowit P M. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome, 1996, 39: 969–977
[4]Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: Mapping strategy and RAPD markers. Genetics, 1994, 137, 1121–1137
[5]McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 257–279
[6]Varshney R K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E, Langridge P, Graner A. Interspeci?c transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195–202
[7]Mba R E C, Stephenson P, Edwards K , Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M. Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet, 2001, 102: 21–31
[8]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15
[9]Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST database for the development and characterization of gene-derived SSR markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 106: 411–422
[10]Bory S, Silva D D, Risterucci A M, Grisoni M, Besse P, Duval M F. Development of microsatellite markers in cultivated vanilla: Polymorphism and transferability to other vanilla species. Sci Hort, 2008, 115: 420–425
[11]Wunsch A. Cross-transferable polymorphic SSR loci in Prunus species. Sci Hort, 2009, 120: 348–352
[12]Varshney R K, Kumar A, Balyan H S, Roy J K, Prasad M, Gupta P K. Characterization of microsatellites and development of chromosome speci?c STMS markers in bread wheat. Plant Mol Biol Rep, 2000, 18: 1–12
[13]Sourdille P, Tavaud M, Charmet G, Bernard M. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet, 2001, 103: 346–352
[14]Tahan O, Geng Y P, Zeng L Y, Dong S S, Chen F, Chen J, Song Z P, Zhong Y. Assessment of genetic diversity and population structure of Chinese wild almond, Amygdalus nana, using EST- and genomic SSRs. Biochem Systematics Ecol, 2009, 37: 146–153
[15]Eujayl I, Sorrells M E, Baum M, Wolters P. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399–407
[16]Zhuang L-F(庄丽芳), Song L-X(宋立晓), Feng Y-G(冯祎高), Qian B-L(钱保俐), Xu H-B(徐海滨), Pei Z-Y(裴自友), Qi Z-J(亓增军). Development and chromosome mapping of new wheat EST-SSR markers and application for characterizing rye chromosomes added in wheat. Acta Agron Sin (作物学报) 2008, 34 (6): 926–933 (in Chinese with English abstract)
[17]Gao L F, Tang J F, Li H W, Jia J Z. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245–261
[18]Chen H M, Li L Z, Wei X Y, Li S S, Lei T D, Hu H Z, Wang H G, Zhang X S. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328–2336
[19]Li L Z, Wang J J, Guo Y, Jiang F S, Xu Y F, Wang Y Y, Pan H T, Han G Z, Li R J, Li S S. Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat. Prog Nat Sci, 2008, 18: 1485–1490
[1] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[2] 张体付,戚维聪,顾闽峰,张晓林,李坦,赵涵. 藜麦EST-SSR的开发及通用性分析[J]. 作物学报, 2016, 42(04): 492-500.
[3] 陈明丽,王兰芬,武晶,张晓艳,杨广东,王述民1. 普通菜豆基因组SSR标记开发及在豇豆和小豆中的通用性分析[J]. 作物学报, 2014, 40(05): 924-933.
[4] 王为,王长彪,刘方,陈浩东,王林,王春英,张香娣,王玉红,王坤波. 棉花非冗余性EST-SSR新标记的开发及其评价[J]. 作物学报, 2012, 38(08): 1443-1451.
[5] 唐梅,陈玉宁,任小平,黄莉,周小静,严海燕,姜慧芳. 源于栽培种花生的EST-SSR引物对野生花生扩增的多态性[J]. 作物学报, 2012, 38(07): 1221-1231.
[6] 钟敏, 程须珍, 王丽侠, 王素华, 王小宝. 绿豆基因组SSR引物在豇豆属作物中的通用性[J]. 作物学报, 2012, 38(02): 223-230.
[7] 黄天带,李哲,孙爱花,周权男,华玉伟,黄华孙. 根癌农杆菌介导的橡胶树花药愈伤组织遗传转化体系的建立[J]. 作物学报, 2010, 36(10): 1691-1697.
[8] 乔婷婷,马春雷,周炎花,姚明哲,刘饶,陈亮. 浙江省茶树地方品种与选育品种遗传多样性和群体结构的EST-SSR分析[J]. 作物学报, 2010, 36(05): 744-753.
[9] 李艳秋,苏志芳,王立新,季伟,姚骥,赵昌平. 小麦分子遗传图谱的加密[J]. 作物学报, 2009, 35(5): 861-866.
[10] 庄丽芳;宋立晓;冯祎高;钱保俐;徐海滨;裴自友;亓增军. 小麦EST-SSR标记的开发和染色体定位及其在追踪黑麦染色体中的应用[J]. 作物学报, 2008, 34(06): 926-933.
[11] 张鹏;张海洋;郭旺珍;郑永战;魏利斌;张天真. 以SRAP和EST-SSR标记分析芝麻种质资源的遗传多样性[J]. 作物学报, 2007, 33(10): 1696-1702.
[12] 邓柳红;罗明武;张春发. 巴西橡胶树SNARE蛋白全长cDNA克隆及其序列特征分析[J]. 作物学报, 2007, 33(05): 826-830.
[13] 邓晓东;费小雯;黄俊生;郑学勤. 橡胶树延伸因子cDNA及其5′端启动子区域序列的分离与分析[J]. 作物学报, 2002, 28(04): 528-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!