欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 477-483.doi: 10.3724/SP.J.1006.2011.00477

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用选择导入系分析大豆芽期和苗期耐旱性的遗传重叠

邱鹏程1,2,张闻博1,2,李灿东4,蒋洪蔚2,刘春燕2,范冬梅1,曾庆力1,胡国华2,3,*,陈庆山1,*   

  1. 1东北农业大学农学院,黑龙江哈尔滨150030;2黑龙江省农垦科研育种中心,黑龙江哈尔滨150090;3国家大豆工程技术研究中心,黑龙江哈尔滨150050;4黑龙江省农业科学院佳木斯分院,黑龙江佳木斯154007
  • 收稿日期:2010-07-29 修回日期:2010-10-09 出版日期:2011-03-12 网络出版日期:2010-12-12
  • 通讯作者: 胡国华, E-mail: Hugh757@vip.com, Tel:0451-55199475; 陈庆山, E-mail: qshchen@126.com, Tel: 0451-55191945
  • 基金资助:

    本研究由农业部转基因专项(2009ZX08009-013B)和农业部引进国际先进农业技术计划(948计划)2006-G1(A)资助。

Genetic Overlap of Drought-Tolerance Loci between Germination Stage and Seedling Stage Analyzed Using Introgression Lines in Soybean

QIU Peng-Cheng1,2,ZHANG Wen-Bo1,2,LI Can-Dong4,JIANG Hong-Wei2,LIU Chun-Yan2,FAN Dong-Mei1,ZENG Qing-Li1,HU Guo-Hua1,3,*,CHEN Qing-Shan1,*   

  1. 1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2 Land Reclamation Research & Breeding Centre of Heilongjiang, Harbin 150090, China; 3 The National Research Center of Soybean Engineering and Technology, Harbin 150050, China; 4 Heilongjiang Academy of Agricultural Sciences Jiamusi Branch, Jiamusi 150030, China
  • Received:2010-07-29 Revised:2010-10-09 Published:2011-03-12 Published online:2010-12-12
  • Contact: 胡国华, E-mail: Hugh757@vip.com, Tel:0451-55199475; 陈庆山, E-mail: qshchen@126.com, Tel: 0451-55191945

摘要: 以黑龙江主栽品种红丰11为母本, 与美国品种Clark杂交, 再以红丰11为轮回亲本, 对回交后代的芽期和苗期的耐旱性进行筛选。结果获得芽期耐旱导入系44个,采用单项方差分析检测到10个控制芽期耐旱性的QTL;获得苗期耐旱导入系46个,检测到影响苗期叶片相对含水量、叶片持水能力、胁迫期间株高变化量的21个QTL。大多数位点的遗传是相互独立的,只有分布于A1、K、I和H连锁群上的Satt449Satt499Satt440Sat_180位点是在芽期、苗期干旱条件下共同检测到的,表明芽期和苗期的耐旱性存在部分的遗传重叠。以上结果为深入研究大豆耐旱性以及进行分子设计育种以累加芽期苗期重要耐旱QTL奠定了基础。

关键词: 大豆, 导入系, 耐旱性, 遗传重叠

Abstract: Soybean grows worldwide in many regions under drought stress, so drought tolerance (DT) is a very important trait for the crop. Most researches have focused on the QTL mapping related with drought-tolerance, but there is no research on the genetic overlap in soybean. A primary backcross introgression lines (ILs) were constructed with Hongfeng 11 as recurrent parent and Clark as donor parent. Forty-four individuals from BC1F5 introgression populations were screened out under drought stress comparing with the Hongfeng11 in germination stage, and 46 individuals were obtained under drought stress comparing with the control population in seedling stage. The QTL identification at germination stage and seedling stage was conducted by one-way ANOVA (for single marker analysis, P<0.05) with the two introgression populations. Then 10 QTLs were mapped in germination stage, 21 QTLs were mapped in seedling stage laced on relative water content(RWC),water holding capacity(WHC), and growth of plant height(GPH). Four QTLs including Satt449, Satt499, Satt440, and Sat_180 in A1, K, I, and H linkage groups were mapped both in germination stage and seedling stage, indicating a partial genetic overlap between these two stages in soybean. The above results would provide a basic for fine mapping and molecular breeding for favorable genes related to DT in soybean.

Key words: Soybean, Introgression lines, Drought tolerance, Genetic overlap

[1]Li C-D(李灿东), Jiang H-W(蒋洪蔚), Liu C-Y(刘春燕), Qiu P-C(邱鹏程), Zhang W-B(张闻博), Li W-F(李文福), Gao Y-L(高运来), Chen Q-S(陈庆山), Hu G-H(胡国华). Genotype and QTL analysis of drought tolerance loci for directional population in soybean. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(3): 285–292 (in Chinese with English abstract)
[2]Liu Y(刘莹), Gai J-Y(盖钧镒), Lü H-N(吕慧能), Wang Y-J(王永军), Chen S-Y(陈受宜). Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean (Glycine max L. Merr.). Acta Genet Sin (遗传学报), 2005, 32(8): 855–863 (in Chinese with English abstract)
[3]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[4]Mian M A R, Ashley D A, Boerma H R. An additional QTL for water use efficiency in soybean. Crop Sci, 1998, 38: 390–393
[5]Mian M A R, Bailey M A, Ashley D A. Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci, 1996, 36: 1252–1257
[6]Xu J-L(徐建龙), Xue Q-Z(薛庆中), Luo L-J(罗利军), Li Z-K(黎志康). QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2001, 28(8): 752–759 (in Chinese with English abstract)
[7]Xu J-L(徐建龙), Xue Q-Z(薛庆中), Luo L-J(罗利军), Li Z-K(黎志康). Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2002, 16(1): 6–10 (in Chinese with English abstract)
[8]Zhou M-Q(周明全), Zhang Z-H(章志宏), Zhao M(赵敏), Hu Z-H(胡中立), Li P(李平), Wang L-X(王玲霞), Zhu L-H(朱立煌). QTL dissection of plant height components in rice (Oryza sativa L.). J Wuhan Bot Res (武汉植物学研究), 2003, 21(1): 22–26 (in Chinese with English abstract)
[9]Zheng T-Q(郑天清), Xu J-L(徐建龙), Fu B-Y(傅彬英), Gao Y-M(高用明), Veruka S, Lafitte R, Zhai H-Q(翟虎渠), Wan J-M(万建民), Zhu L-H(朱苓华), Li Z-K(黎志康). Preliminary identification of genetic overlaps between sheath blight resistance and drought tolerance in the introgression lines from directional selection. Acta Agron Sin (作物学报), 2007, 33(8): 1380–1384 (in Chinese with English abstract)
[10]Zang J P, Sun Y, Wang Y, Yang J, Li F, Zhou Y L, Zhu L H, Jessica R, Fotokian M, Xu J L, Li Z K. Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Sci China (Ser C: Life Sci), 2008, 51: 583–591
[11]Richards R A. Defining Selection Criteria to Improve Yield under Drought: Plant Growth Regulation. Netherland: Kluwer academic publishers, 1996, 20: 157–166
[12]Li Y-H(李雪华), Li X-H(李新海), Hao Z-F(郝转芳), Tian Q-Z(田清震), Zhang S-H(张世煌). Consensus map of the QTL relevant to drought tolerance of maize under drought conditions. Sci Agric Sin (中国农业科学), 2005, 38(5): 882–890 (in Chinese with English abstract)
[13]Eshed Y, Zamir D. Introgressions from Lycopersicon pennellii can improve the soluble-solids yield of tomato hybrids. Theor Appl Genet, 1994, 88: 891–897
[14]Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in Lesculentum: a tool for fine mapping of genes. Euphytica, 1994, 79: 175–179
[15]Zhang Y S, Luo L J, Xu C G, Zhang Q F, Xing Y Z. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet, 2006, 113: 361–368
[16]LI Y-L(李玉玲), Niu S-Z(牛素贞), Dong Y-B(董永彬). Mapping QTL of popping fold with advanced backcross method in popcorn. Acta Agron Sin (作物学报), 2007, 33(5): 831–836 (in Chinese with English abstract)
[17]Liang Y(梁燕), Jia Y-J(贾玉娟), Li A-G(李爱国), Zhang B-C(张保才), Liu G-P(刘广平), Li J-Z(李骏智), Shi Y-Z(石玉真), LI J-W(李俊文), Liu A-Y(刘爱英), Gong J-W(龚举武), Wang T(王涛), Shang H-H(商海红), Gong W-K(巩万奎), Yuan Y-L(袁有禄). Phenotyping traits related to yield and quality of BC5F2 substitution lines in cotton and their QTL mapping. Mol Plant Breed (分子植物育种), 2010, 8(2): 221–230 (in Chinese with English abstract)
[18]Wang Q(汪骞), He J-M(和江明), Lin L-B(林良斌), Zhuang M(庄木), Wang Y(王艳), Wang X-W(王晓武), Wu J(武剑). The development of backcross introgression lines (BILs) and genetic analysis for Brassica campestris. Acta Hort Sin (园艺学报), 2009, 36(9): 1305–1310 (in Chinese with English abstract)
[19]Liao C-J(廖长见), Wang Y-H(王颖姮), Pan G-T(潘光堂). Construction and application of chromosome introgression lines in crops. Mol Plant Breed (分子植物育种), 2007, 5(6): 139–144 (in Chinese with English abstract)
[20]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z, Rey J D, Vijayakumar C H M, Maghirang R, Zheng T Q, Zhu L H. Genome-wide introgression lines and a forward genetics strategy for functional genomic research of complex phenotypes in rice. Plant Mol Biol, 2005, 59: 33–52
[21]Kang L(康乐), Li H(李宏), Sun Y(孙勇), Lu D-C(卢德城), Zhang F(张帆), Huang D-Q(黄道强), Xu J-L(徐建龙), Wang Z-D(王志东), Zhu L-H(朱苓华), Gao Y-M(高用明), Fu B-Y(傅彬英), Li K-H(李康活), Zhou Y-L(周永力), Zhou S-C(周少川), Li Z-K(黎志康). Genetic dissection of yield potential in rice (Oryza sativa L.) using introgression lines. Acta Agron Sin (作物学报), 2008, 34(9): 1500–1509 (in Chinese with English abstract)
[22]Yang J-P(杨剑平), Chen X-Z(陈学珍), Wang W-P(王文平), Li Y(李杨). The Establishment of the Simulated System of Drought for Soybean in Laboratory. Chin Agric Sci Bull (中国农学通报), 2003, 19(3): 65–68 (in Chinese with English abstract)
[23]Jiang H-W(蒋洪蔚), Li C-D(李灿东), Liu C-Y(刘春燕), Zhang W-B(张闻博), Qiu P-C(邱鹏程), Li W-F(李文福), Gao Y-L(高运来), Hu G-H(胡国华), Chen Q-S(陈庆山). Genotype analysis and QTL mapping for tolerance to low temperature in germination by Introgression lines in soybean. Acta Agron Sin (作物学报), 2009, 35(7): 1268–1273
[24]Lin H-M(林汉明), Chang R-Z(常汝镇), Shao G-H(邵桂花), Liu Z-T(刘忠堂). Research on Tolerance to Stresses in Chinese Soybean (中国大豆耐逆研究). Beijing: China Agriculture Press, 2009. pp 33–35
[25]Xiong L Z, Yang Y N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745–759
[26]Hu R-H(胡荣海), Chang X-P(昌小平), Wang H(王环). The physiological base and utilization of repeated drought method. Acta Agric Boreali-Sin (华北农学报), 1996, 11(3): 51–56 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!