作物学报 ›› 2011, Vol. 37 ›› Issue (04): 641-649.doi: 10.3724/SP.J.1006.2011.00641
李军,赵爱春**,王茜龄,张琼予,黎其友,金筱秐,李镇刚,余茂德*
LI Jun, ZHAO Ai-Chun**, WANG Xi-Lin, ZHANG Qiong-Yu, LI Qi-You, JIN Xiao-Yun, LI Zhen-Gang,YU Mao-De*
摘要: 肌动蛋白基因在植物各种生理活动中具有极其重要的作用,通过同源克隆与反向PCR的方法,克隆了3个肌动蛋白基因的核心片段,其中一个为已报道的MaACT1,另两个分别被命名为MaACT2和MaACT3,进而PCR扩增获得MaACT1和MaACT2肌动蛋白全长CDS,其中MaACT2基因全长1 704 bp,由4个外显子和3个内含子组成,CDS为1 134 bp,编码377个氨基酸残基。采用RT-PCR的方法分析了3个基因在叶、茎、果、根等组织的表达情况以及在茎、叶和托叶的生长过程中的表达变化。MaACT1在茎中表达量较弱但有随着茎的生长逐渐增强的趋势,在幼叶中有较高的表达,MaACT2与MaACT3在根、茎、叶等组织中都有较高表达,MaACT3在叶、托叶和茎的各个发育时期表达都很稳定,可以作为桑树基因表达研究的内参基因。
[1]Staiger C J, Schliwa M. Actin localization and function in higher plants. Protoplasm, 1987, 141: 1–12 [2]Kabsch W, Vandekerckhove J. Structure and function of actin. Annu Rev Biophys Biomol Struct, 1992, 21: 49–76 [3]Kandasamy M K, McKinney E C, Meagher R B. The late pollen-specific actins in angiosperms. Plant J, 1999, 18: 681–691 [4]Chen N Z, Qu X L, Wu Y J, Huang S. Regulation of actin dynamics in pollen tubes: control of actin polymer level. J Integr Plant Biol, 2009, 51: 740–750 [5]Thomas C, Meyer D, Wollf M, Himber C, Alioua M, Steinmetz A. Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol, 2003, 52: 1025–1036 [6]Firtel R. Multigene family encoding actin and tubulin. Cell, 1981, 24: 6–7 [7]McDowell J M, Huang S J, McKinney E C, An Y Q, Meagher R B. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics, 1996, 142: 587–602 [8]Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859–875 [9]McElroy D, Rothenberg M, Reece K S, Wu R. Characterization of the rice actin gene family. Plant Mol Biol, 1990, 15: 257–268 [10]Thangavelu M, Belostotsky D, Bevan M W, Flavell R B, Rogers H J, Lonsdale D M. Partial characterization of the Nicotiana tabacum actin gene family: Evidence for pollen specific expression of one of the gene family members. Mol Gen Genet, 1993, 240: 290–295 [11]Gang P, Cheng F L. Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Marus alba L.) and analysis of the function of this gene in plant development and stresses response. J Plant Physiol, 2008, 165: 1204–1213 [12]Aljanabi S M, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res, 1997, 25: 4692–4693 [13]Huang S, An Y Q, McDowell J M, McKinney E C, Meagher R B. The Arabidopsis thaliana ACT4/ACT12 actin gene subclass is strongly expressed throughout pollen development. Plant J, 1996, 10: 189–202 [14]Zhang D Q, Du Q Z, Xu B H, Zhang Z Y, Li B. The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genomics, 2010, 284: 105–119 [15]Kandasamy M K, McKinney E C, Meagher R B. Functional nonequivalency of actin isovariants in Arabidopsis. Mol Biol Cell, 2002, 13: 251–261 [16]An Y Q, Huang S R, McDowell J M, McKinney E C, Meagher R B. Conserved expression of the Arabidopsis ACT1 and ACT3 actin subclass in organ primordia and mature pollen. Plant Cell, 1996, l8: 15–30 [17]Meagher R B, McKinney E C, Kandasamy M K. Isovariant dynamics expand and buffer the responses of complex systems: the diverse plant actin gene family. Plant Cell, 11: 995–1005 [18]Staiger C J, Blanchoin L. Actin dynamics: old friends with new stories. Curr Opin Plant Biol, 2006, 9: 554–562 [19]Fu Y. The actin cytoskeleton and signaling network during pollen tube tip growth. J Integr Plant Biol, 2010, 52: 131–137 [20]Hightower R C, Meagher R B. The molecular evolution of actin 1986. Genetics, 1986, 114: 315–332 [21]Pollard T D, Cooper J A. Actin and actin-binding proteins: a critical evaluation of mechanisms and functions. Annu Rev Biochem, 1986, 55: 987–1035 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[4] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[5] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[6] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[9] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[10] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[11] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[12] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[13] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[14] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[15] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
|