欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1879-1887.doi: 10.3724/SP.J.1006.2011.01879

• 耕作栽培·生理生化 • 上一篇    下一篇

花铃期遮阴对棉花氮素代谢的影响及其机制研究

于莎,王友华,周治国*,吕丰娟,刘敬然,马伊娜,陈吉   

  1. 南京农业大学农学院 / 农业部南方作物生理生态重点开放实验室,江苏南京 210095
  • 收稿日期:2011-02-13 修回日期:2011-04-27 出版日期:2011-10-12 网络出版日期:2011-06-28
  • 通讯作者: 周治国, E-mail: giscott@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30971735)资助。

Effect of Shade on Nitrogen Metabolism and Its Mechanism in Cotton Plant at Flowering and Boll-forming Stage

YU Sha,WANG You-Hua,ZHOU Zhi-Guo*,LÜ Feng-Juan,LIU Jing-Ran,MA Yi-Na,CHEN Ji,Abudukeyoumu?Abudurezike   

  1. Key Laboratory of Crop Physiology & Ecology in Southern China, Ministry of Agriculture / College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-02-13 Revised:2011-04-27 Published:2011-10-12 Published online:2011-06-28
  • Contact: 周治国, E-mail: giscott@njau.edu.cn

摘要: 为明确花铃期弱光对棉花氮素代谢的影响及其内在机理,以苏棉15和科棉1号为材料,在棉株第6~8果枝的第1~2果节开花时利用遮阴网遮阴, 令透光率分别为100%、80%和60%,研究遮阴条件下棉花根系吸收能力及棉株氮素代谢相关酶活性动态变化特征。结果表明,在0~50 d的遮阴期内,随透光率减弱, 根系吸收能力及棉株氮素代谢相关酶活性降低;遮阴15 d后氮素代谢相关酶活性变化最为显著,在透光率60%处理下, 苏棉15、科棉1号根系硝酸还原酶、谷氨酰胺合酶、谷氨酸合酶、谷氨酸脱氢酶活性分别下降25.1%、53.2%、39.1%和25.5%,主茎功能叶相应酶活性分别下降50.3%、24.0%、30.4%和18.9%。根系、主茎功能叶变化程度不同, 说明二者的氮素代谢机制对遮阴的反应存在一定差异:遮阴条件下根系氮素代谢能力下降的原因主要是谷氨酰胺合酶/谷氨酸合酶循环介导的氮素同化能力下降,其次为硝酸还原酶介导的氮素还原能力下降;主茎功能叶氮素代谢能力下降的原因主要是硝酸还原酶介导的氮素还原能力下降,其次为谷氨酰胺合酶/谷氨酸合酶循环介导的氮素同化能力下降。遮阴条件下棉花碳、氮代谢能力降低,最终导致棉株根系、主茎功能叶氮素含量和累积量降低,棉花单株铃数、铃重、籽棉产量亦随遮阴程度加深显著减少(P<0.05)。

关键词: 棉花, 弱光, 花铃期, 根系, 主茎功能叶, 氮素代谢

Abstract: Cotton is an important economic crop in China and light is a major limiting factor to yield in cotton. The objective of the experiment was to clarify the effect of low light stress on nitrogen metabolism in cotton (Gossypium hirsutum L.) plant. Cotton cultivars (Sumian 15, Kemian 1) were grew in pots, and treated with three light densities (100%, 80%, 60% of natural light) at the flowering stage in 1st–2nd fruiting node on 6–8th fruiting branches. It was sampled four times with 15-day intervals from onset to bolls open. Cotton root vigor, root absorption and activities of the nitrate reductase, glutamine synthase, glutamate synthase and glutamate dehydrogenase were analyzed. The results showed that with increase of the shading level, root vigor and root absorption decreased seriously. Both in root and function leaf, activities of the nitrogen metabolic enzymes, such as NR, GS, GOGAT were seriously inhibited at the 15th days of shade. The activities of nitrate reductase (NR), glutamine synthase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) decreased by 25.1%, 53.2%, 39.1%, 25.5% in root, while 50.3%, 24.0%, 30.4%, 18.9% in function leaf. The descending of nitrogen absorption in cotton root resulted from the drop of GS/GOGAT activity firstly and the drop of NR activity secondly, but the decreasing of nitrogen metabolic ability in functional leaf induced from the drop of NR activity firstly and the drop of GS/GOGAT activity secondly. Low light could repress root vigor and root absorption. The activities of NR, GS/GOGAT were also suppressed, which resulted decrease of amino acid content, soluble protein content and nitrogen accumulation both in root and function leaf with the increasing of the shading level. The yield of cotton plant also decreased with the shading and the boll number was the most sensitive to shade.

Key words: Gossypium hirsutum L., Shade, Flowering and boll-forming stage, Root, Functional leaf, Nitrate metabolism

[1] Zhou Z-G(周治国). Effect of shading during seedling period on photosynthetic characteristics and metabolites of cotton functional leaf. Acta Agron Sin (作物学报), 2001, 27(6): 967-973 (in Chinese with English abstract)
[2] Wang Q-C(王庆材). Effect of Shading in Flowering and Boll-forming Stages on the Development of Cotton Fibre and Physiological Characteristics of Cotton Leaf. MS Dissertation.of Shandong Agricultural University, 2005 (in Chinese with English abstract)
[3] Yang X-H(杨兴洪), Zou Q(邹琦), Zhao S-J(赵世杰). Photosynthetic characteristics and chlorophyll fluorescence in leaves of cotton plants growth in full light and 40% sunlight. Acta Phytoecol Sin (植物生态学报), 2005, 29(1): 8-15 (in Chinese with English abstract)
[4] Chen J-Q(陈锦强), Li M-Q(李明启). The relationship between nitrogen metabolism and photosynthesis in green leaf of higher plants. Plant Physiol Commun (植物生理学通讯), 1984, 1(1): 1-8 (in Chinese)
[5] Bowsher C G, Long D M, Oaks A, Rothstein S J. Effect of light/dark cycles on expression of nitrate assimilatory genes in maize shoots and roots. Plant Physiol, 1991, 95(1): 281-285
[6] Flores E, Romero J M, Guerrero M G, Losada M. Regulatory interaction of photosynthetic nitrate utilization and carbon dioxide fixation in the cyanobacterium Anacystis nidulans. BBA Bioenergetics, 1983, 725: 529-532
[7] Guan Y-X(关义新), Lin B(林葆), Ling B-Y(凌碧莹). The interactive effects of growth light condition and nitrogen supply on maize (Zea mays L.) seedling photosynthetic traits and metabolism of carbon and nitrogen. Acta Agron Sin (作物学报), 2000, 26(6): 806-812 (in Chinese with English abstract)
[8] Gao Y-D(高廷东). The Interactive Effect of Light and Different Nitrogen Forms on Assillilation of Carbon and Nitrogen in Wheat Seedling. MS Dissertation of Shandong Agricultural University, 2003 (in Chinese with English abstract)
[9] Melo O R, Oliveira I C, Coruzzi G M. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci USA, 1996, 93: 4718-4723
[10] Chen J-Q(陈锦强), Li M-Q(李明启). Researsh progress on the photorespiration. I: The relationship between photorespiration and nitrogen metabolism and physiological function of photorespiration. Plant Physiol Commun (植物生理学通讯), 1984, (3): 5-12 (in Chinese with English abstract)
[11] Peng X-X(彭新湘), Li M-Q(李明启). Effects of photorespiratory metabolites glycolate, glyoxylate and oxalate on nitrate reduction in tobacco leaf. Acta Phytophysiol Sin (植物生理学报), 1987, 13(2): 182-189 (in Chinese with English abstract)
[12] Yu R-C(余让才), Li M-Q(李明启), Fan Y-P(范燕萍). Study on the relationship between photorespiration and nitrogen metabolism: effects of inhibitors and metabolisms of photorespiration on the lightinduction of nitrate reductase. Sci Agric Sin (中国农业科学), 2002, 35(1): 49-52 (in Chinese with English abstract)
[13] Masclaux D C, Reisdorf C M, Pageau K, Lelandais M, Grandjean O, Kronenberger J, Valadier M H, Feraud M, Jouglet T, Suzuki A. Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol, 2006, 140: 444-456
[14] Huppe H C, Turpin D H. Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45: 577-607
[15] Song J-M(宋建民), Tian J-C(田纪春), Zhao S-J(赵世杰). Relationship between photosynthetic carbon and nitrogen metabolism in plants and its regulation. Plant Physiol Commun (植物生理学通讯), 1998, (3): 230-238 (in Chinese)
[16] Galangau F, Daniel V F, Moureaux T, Dorbe M F, Leydecker M T. Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol, 1988, 88: 383-388
[17] Champigny M L. Integration of photosynthetic carbon and nitrogen metabolism in higher plants. Photosynth Res, 1995, 46: 117-127
[18] De Pinheiro Henriques A R, Marcelis L F M. Regulation of growth at steady-state nitrogen nutrition in lettuce (Lactuca sativa L.): interactive effects of nitrogen and irradiance. Ann Bot, 2000, 86: 1073-1080
[19] Michael B W, Peter B R. Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology, 2000, 81: 1887-1901
[20] Groot Corine C de, Marcelis Leo F M, Boogaard Riki van den, Lambers H. Interactive effects of nitrogen and irradiance on growth and partitioning of dry mass and nitrogen in young tomato plants. Funct Plant Biol, 2002, 29: 1319-1328
[21] Lillo C. Light Regulation of Nitrate uptake, Assimilation and Metabolism, in Nitrogen Acquisition and Assimilation in Higher Plants, S. Amâncio and I. Stulen, Editors. Book section, 2004, pp 149-184
[22] Touchette B W, Burkholder, J M. Carbon and nitrogen metabolism in the seagrass, Zostera marina L.: environmental control of enzymes involved in carbon allocation and nitrogen assimilation. J Exp Marine Biol Ecol, 2007, 350: 216-233
[23] Yang J-W(杨际伟). Effect of low light stress on nutrient absorptionand quality of Cassita routunaifollia. MS Dissertation.of Fujian Agriculture and Forestry University, 2009 (in Chinese)
[24] Zhang J-W(张吉旺). Effects of Light and Temperature Stress on Physiological Characteristics of Yield and Quality in Maize (Zea mays L.). PhD Dissertation of Shandong Agricultural University, 2005 (in Chinese with English abstract)
[25] Wang L-G (王立国). Studies on Characteristics of Cotton Root Physiology and Rhizosphere Micro-Ecology in Colony of Yielded Cotton-Wheat Double Cropping System. MS Dissertation of Shandong Agricultural University, 2003 (in Chinese)
[26] Wang Q-C(王庆材), Sun X-Z(孙学振), Song X-L(宋宪亮), Guo Y(郭英), Li Y-J(李玉静), Chen S-Y(陈淑义), Wang Z-L(王振林). Effect of shading at different developmental stages of cotton bolls on cotton fibre. Acta Agron Sin (作物学报), 2006, 32(5): 671-675 (in Chinese with English abstract)
[27] Li H-S(李合生). Principles and Techniques of Plant Physiological and Biochemical Experiment (植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000 (in Chinese)
[28] Kong X-S(孔祥生), Yi X-F(易现峰). Techniques of Plant Physiological Exprement (植物生理学实验技术). Beijing: China Agriculture Press, 2008 (in Chinese)
[29] Lin C C, Kao C H. Disturbed ammonium assimilation is associated with growth inhibition of roots in rice seedlings caused by NaCl. Plant Growth Regul, 1996, 18: 233-238
[30] Zhang C F, Peng S B, Peng X X, Chavez A Q, Bennett J. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots. Plant Science, 1997, 125: 163-170
[31] Dong Z-Q(董志强). Chemical Control on Nitrogen Metabolism Character and High Yield Expression Cooperate with Anti-insect Quality of Bt-transgenic Cotton. PhD Dissertation of China Agricultural University, 2000 (in Chinese with English abstract)
[32] Yun F(云菲), Liu G-S(刘国顺), Shi H-Z(史宏志). Interaction effects of light intensity and nitrogen supply on gas exchange, some enzyme activities in carbon-nitrogen metabolism and quality in flue-cured tobacco. Acta Agron Sin (作物学报), 2010, 36(3): 508-516 (in Chinese with English abstract)
[33] Hu W-H(胡文海). The Physiological and Biochemical Responses of Tomato (Lycopersion esculentum Mill) to Chilling under Low Light. MS Dissertation.of Zhejing Universty, 2001 (in Chinese)
[34] Xu W-J(徐文静), Wang Z-Q(王政权), Fan Z-Q(范志强), Sun H-L(孙海龙), Jia S-M(贾淑霞), Wu C(吴楚). Effect of shanding on the senescence of fine roots of fraxinus mandshurica seedlings. J Plant Ecol (植物生态学报), 2006, 30(1): 104-111 (in Chinese with English abstract)
[35] Xu C-A(许长蔼), Ni J-S(倪晋山). The metabolic pool of nitrate reduction in wheat leaves. Acta Phytophysiol Sin (植物生理学报), 1990, 16(3): 277-283 (in Chinese with English abstract)
[36] Xu C-A(许长蔼). Regulation of nitrate reductase activity in vivo by nitrate availability in higher plants. Plant Physiol Commun (植物生理学通讯), 1991, 27(3): 173-177 (in Chinese)
[37] Ochs G, Schock G, Trischler M, Kosemund K, Wild A. Complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus. Plant Mol Biol, 1999, 39: 395-405
[38] Dubois F, Brugière N, Sangwan R S, Hirel B. Localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ- and cell-specific patterns of protein synthesis and gene expression. Plant Mol Biol, 1996, 31: 803-817
[39] Coschigano K T, Melo O R, Lim J, Coruzzi G M. Arabidopsis gls mutants and distinct fd-gogat genes: implications for photorespiration and primar y nitrogen assimilation. Plant Cell, 1998, 10: 741-752
[40] Cren M, Bertrand H. Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol, 1999, 40: 1187-1193
[41] Hecht U, Oelmüller R, Schmidt S, Mohr H. Action of light, nitrate and ammonium on the levels of NADH and ferredoxin-dependent glutamate synthases in the cotyledons of mustard seedlings. Planta, 1988, 175: 130-138
[42] Robinson S A, Slade A P, Fox G G, Phillips R, Ratcliffe R G, Stewart G R. The role of glutamate dehydrogenase in plant nitrogen metabolism. Plant Physiol, 1991, 95: 509-516
[43] Huang G-C(黄国存), Tian B(田波). The physiological role of glutamate dehydrogenase in higher plants. Chin Bull Bot (植物学通报), 2001, 18(4): 396-401 (in Chinese with English abstract)
[44] Yuan Y(袁野). The interactive effects of light intensity and nitrogen supply on carbon and nitrogen metabolism of tomato. MS Dissertation of Northeast Agricultural University, 2008 (in Chinese with English abstract)
[45] Zhao D, Oosterhuis D. Physiologic and yield responses of shaded cotton to the plant growth regulator PGR-IV. J Plant Growth Regul, 1998, 17: 47-52
[46] Zhao D, Oosterhuis D. Cotton Responses to shade at different growth stages: growth, lint yield and fibrequality. Exp Agric, 2000, 36: 27-39
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析[J]. 作物学报, 2021, 47(4): 714-727.
[14] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[15] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!