欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 1967-1974.doi: 10.3724/SP.J.1006.2011.01967

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用RIL群体和自然群体检测与花生含油量相关的SSR标记

黄莉,赵新燕,张文华,樊志明,任小平,廖伯寿,姜慧芳*,陈玉宁   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学重点开放实验室,湖北武汉 430062
  • 收稿日期:2011-03-23 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 姜慧芳, E-mail:peanutlab@oilcrops.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)(2011CB109300), 农业部农作物种质资源保护项目(NB2010-2130135-28B), 国家花生产业技术体系建设(CARS-14-种质资源评价)资助。

Identification of SSR Markers Linked to Oil Content in Peanut (Arachis hypogaea L.) through RIL Population and Natural Population

HUANG Li,ZHAO Xin-Yan,ZHANG Wen-Hua,FAN Zhi-Ming,REN Xiao-Ping,LIAO Bo-Shou,JIANG Hui-Fang*,CHEN Yu-Ning   

  1. Key Laboratory of Oil Crop Biology, Ministry of Agricultural / Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
  • Received:2011-03-23 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 姜慧芳,E-mail:peanutlab@oilcrops.cn

摘要: 以远杂9102×中花5号杂交后代衍生的重组近交系F8代家系为材料,在含油量测试的基础上,选用10份低油材料(平均含油量52.91%)、12份高油材料(平均含油量58.85%)以及亲本进行SSR引物筛选,通过631对SSR引物扩增,筛选出来源于7对引物的13个有显著差异的片段可以有效区分低油材料和高油材料。以这7对差异引物在F8 RIL群体中扩增,对20份低油家系材料(含油量<55%)和45份高油家系材料(含油量>56%)进行统计分析,获得1个与花生含油量相关的分子标记2A5-250/240,其中,标记2A5-250为低油材料(含油量<55%)所拥有,相符率为95.0%,标记2A5-240为高油材料(含油量>56%)所拥有,相符率为88.9%。用SSR标记2A5-250/240检测11份高油(平均含油量为55.93%)栽培种花生和11份低油(平均含油量为48.41%)栽培种花生,结果表明,标记2A5-240与高油栽培种花生的符合率为63.6%,2A5-250与低油栽培种花生的符合率为90.9%。在19份高油(平均含油量为58.60%)野生花生中,10份野生花生能检测到标记2A5-240。综合分析RIL群体和自然群体的研究结果表明,标记2A5-250/240可用于花生含油量分子标记辅助选择。

关键词: 花生, 含油量, SSR, 分子辅助选择

Abstract: Oil content has been an important quality trait for peanut. However, the progress in genetic improvement of oil content is slow. This is mainly due to the complex genetic basis, the high cost in oil content testing, and difficulty in phenotypic selection because of environmental influence. Therefore, marker assisted selection (MAS) is necessary for oil content improvement in peanut breeding. In the present study, F8 RILs derived from a cross of Yuanza 9102×Zhonghua 5 were selected as materials. Ten RILs with extremely low oil content (about 52.91% on an average), twelve RILs with extremely high oil content (about 58.85% on an average) and the two parental lines were used to screen 631 simple sequence repeat (SSR) primers. Thirteen polymorphic bands of seven SSR primers were able to distinguish the extremely high and low oil content lines. Subsequently, the seven SSR primers were used to genotype the total RIL population. Based on the statistics of the SSR data from 20 lines with low oil content (less than 55%) and 45 lines with high oil content (more than 56%), we identified that a SSR marker, 2A5-250/240, was tightly linked to the oil content trait. The band 2A5-250 appeared almost in all low oil content lines with the match rate of 95.0%, while the band 2A5-240 appeared almost in all high oil content lines with the match rate of 88.9%. Detection of the marker 2A5-250/240 was conducted in 11 high oil (55.93% on an average) and 11 low oil (48.41% on an average) content peanut cultivars. The results showed that the match rates of the band 2A5-250 to low oil content materials and 2A5-240 to high oil content materials was 90.9% and 63.6%, respectively. In addition, the band 2A5-240 appeared in 10 of the 19 wild peanut (Arachis) lines with high oil content (about 58.60%). The results based on the analyses using RIL and natural populations demonstrated that the SSR marker 2A5-250/240 was useful for marker-assisted selection of oil content in peanut.

Key words: Peanut (Arachis hypogaea L.), Oil content, SSR, Marker assisted selection

[1]Liao B-S(廖伯寿), Lei Y(雷永), Wang S-Y(王圣玉), Li D(李栋), Huang J-Q(黄家权), Jiang H-F(姜慧芳), Ren X-P(任小平). Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin (作物学报), 2008, 34(6): 999-1004 (in Chinese with English abstract)

[2]Zhang L-H(张礼红), Tan X-H(谭兴和), Wang F(王锋), Deng J-H(邓洁红), Pan X-H(潘小红). Review on arachis in foreign. Food Sci Technol (食品科技), 2007, (6): 13-16 (in Chinese with English abstract)

[3]Jiang H-F(姜慧芳), Ren X-P(任小平). Genetic diversity of peanut resource on morphological characters and seed chemical components in China. Chin J Oil Crop Sci (中国油料作物学报), 2006, 28(4): 421-426 (in Chinese with English abstract)

[4]Tai Y P, Clyde T Y. Genetic studies of peanut proteins and oils. J Am Oil Chem Soc, 1975, 52(9): 377-385

[5]Yu S-L(禹山林), Yang Q-L(杨庆利), Pan L-J(潘丽娟), Bo W-N(薄文娜). Genetic analysis for oil content of peanut seeds. J Plant Genet Resour (植物遗传资源学报), 2009, 10(3): 453-456 (in Chinese with English abstract)

[6]Chen S-L(陈四龙), Li Y-R(李玉荣), Cheng Z-S(程增书), Liao B-S(廖伯寿), Lei Y(雷永), Liu J-S(刘吉生). Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene. Sci Agric Sin (中国农业科学), 2009, 42(9): 3048-3057 (in Chinese with English abstract)

[7]Wang J-Y(王金彦), Yang Q-L(杨庆利), Yu S-L(禹山林). Development and application of SSR markers in peanut. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31(3): 401-406 (in Chinese with English abstract)

[8]Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of majorgene and polygene. Acta Genet Sin, 2006, 33: 171-180

[9]Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. Oil content in a European × Chinese rapeseed population: QTL with additive andepistatic effects and their genotype-environment interactions. Crop Sci, 2005, 45: 51-59

[10]Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J E, Deschamps M, Margale E, Vincourt P, Renard M. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet, 2006, 113: 1331-1345

[11]Mahmood T, Rahman M H, Stringam G R, Yeh F, Good A G. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet, 2006, 113:1211-1220

[12]Mansur L M, Orf J, Lark K G. Determ in ing the linkage of quantitative trait loci to RFLP maker using extreme phenotype of recombinant inbreds of soybean(Glycine max L. Merr.). Theor Appl Genet, 1993, 86: 914-918

[13]Wu X-L(吴晓雷), Wang Y-J(王永军), He C-Y(贺超英), Chen S-Y(陈受宜), Gai J-Y(盖钧镒), Wang X-C(王学臣). QTLs mapping of some agronomic traits of doybean. Acta Genet Sin (遗传学报), 2001, 28(10): 947-955 (in Chinese with English abstract)

[14]Hong Y-B(洪彦彬), Lin K-Y(林坤耀), Zhou G-Y(周桂元), Li S-X(李少雄), Li Y(李艳), Liang X-Q(梁炫强). Genetic linkage analysis of SSR markers and the gene for dark purple testa color in peanut (Arachis hypogaea L.). Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(1): 35-38 (in Chinese with English abstract)

[15]Wang H(王辉), Shi Y-M(石延茂), Ren Y(任艳), Li S-L(李双铃), Jiao K(焦坤), Yuan M(袁美), Li H-J(李华军). Development of SSR markers for root-knot nematode resistance in peanut. J Peanut Sci (花生学报), 2008, 37(2): 14-17 (in Chinese with English abstract)

[16]Hong Y-B(洪彦彬), Li S-X(李少雄), Liu H-Y(刘海燕), Zhou G-Y(周桂元), Chen X-P(陈小平), Wen S-J(温世杰), Liang X-Q(梁炫强). Correlation analysis of SSR markers and host resistance to Aspergillus flavus infection in peanut (Arachis hypogaea L.) Mol Plant Breed (分子植物育种), 2009, 7(2): 360-364 (in Chinese with English abstract)

[17]Varshney R K, Bertioli D J, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009, 118: 729-739

[18]Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resisitance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010, 121: 971-984

[19]Xia Y-L(夏友霖), Liao B-S(廖伯寿), Li J-N(李加纳), Lei Y(雷永), Jiang H-F(姜慧芳), Cui F-H(崔富华), Zeng X-P(曾孝平). Identification of AFLP markers linked to resistance to late leaf spot in peanut (Arachis hypogaea L.). Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(3): 318-321 (in Chinese with English abstract)

[20]Hou H-M(侯慧敏), Liao B-S(廖伯寿), Lei Y(雷永), Ren X-P(任小平), Wang S-Y(王圣玉), Li D(李栋), Jiang H-F(姜慧芳), Huang J-Q(黄家权), Chen B-Y(陈本银). Identification of AFLP markers for resistance to peanut rust. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(2): 89-92 (in Chinese with English abstract)

[21]Lei Y(雷永), Liao B-S(廖伯寿), Wang S-Y(王圣玉), Li D(李栋), Jiang H-F(姜慧芳). Identification of AFLP markers for resistance to seed infection by Aspergillus flavus in peanut (Arachis hypogaea L.). Acta Agron Sin (作物学报), 2005, 31(10): 1349-1353 (in Chinese with English abstract)

[22]Liao B-S(廖伯寿), Lei Y(雷永), Li D(李栋), Wang S-Y(王圣玉), Huang J-Q(黄家权), Ren X-P(任小平), Jiang H-F(姜慧芳), Yan L-Y(晏立英). Novel high oil germplasm with resistance to Aspergillus flavus and bacterial wilt developed from recombinant inbred lines. Acta Agron Sin (作物学报), 2010, 36(8): 1296-1301 (in Chinese with English abstract)

[23]Hopkins M S, Casa A M, Wang T, Mitchell S E, Dean R E, Kochert G D, Kresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSR) in peanut. Crop Sci, 1999, 39: 1243-1247

[24]Palmieri D A, Hoshino A A, Bravo J P, Lopes C R, Gimenes M A. Isolation and characterization of microsatellite loci from the forage species Arachis Pintoi (Genus Arachis). Mol Ecol Notes, 2002, 2: 551-553

[25]He G, Meng R, Newman M, Gao G, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (A. hypogaea L.). BMC Plant Biol, 2003, 3: 3

[26]Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064-1070

[27]Moretzsohn M C, Hopkins M S, Mitchell S E, Kresovich S, Valls J F, Ferreira M E. Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol, 2004, 4: 11

[28]Moretzsohn M C, Leoi L, Proite K, Guimaras P M, Leal-Bertioli S C M, Gimenes M A, Martins W S, Valls J F M, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060-1071

[29]Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol Notes, 2005, 5: 77-79

[30]Chen B-Y(陈本银), Jiang H-F(姜慧芳), Liao B-S(廖伯寿), Ren X-P(任小平). Phylogenetic relationship among the species in genus Arachis through SSR. J Plant Genet Resour (植物遗传资源学报), 2007, 8(2): 140-144 (in Chinese with English abstract)

[31]Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823-837

[32]Kantety R V, La Rota M, Matthews D E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510

[33]Upadhyaya H D, Nigam S N. Detection of epistasis for protein and oil contents and oil quality parameters in peanut. Crop Sci, 1999, 39: 115-118

[34]Wynne J C, Coffelt T A. Genetics of Arachis hypogaea L. In: Pattee H E, Young C T, eds. Peanut Science and Technology. Yoakum, TX: American Peanut Research and Education Society, 1982. pp 50-94

[35]Liu E-S(刘恩生). Diallel analysis for yield protein and oil content of peanut. Acta Agric Boreali-Sin (华北农学报), 1987, 2(3): 18-26 (in Chinese with English abstract)
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[9] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[10] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[11] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[12] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[13] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[14] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[15] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!