欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2158-2166.doi: 10.3724/SP.J.1006.2011.02158

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

14个小麦品种(系)抗叶锈性分析

胡亚亚,张娜,李林懋,杨文香*,刘大群*   

  1. 河北农业大学植物病理学系 / 河北省农作物病虫害生物防治工程技术研究中心 / 国家北方山区农业工程技术研究中心, 河北保定 071001
  • 收稿日期:2011-09-02 修回日期:2011-09-25 出版日期:2011-12-12 网络出版日期:2011-09-29
  • 通讯作者: 杨文香, E-mail: wenxiangyang2003@163.com, Tel: 0312-7528585; 刘大群, E-mail: ldq@hebau.edu.cn, Tel: 0312-7528500
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项(200903035)资助。

Analysis of Wheat Leaf Rust Resistance Genes in 14 Wheat Cultivars or Lines

HU Ya-Ya, ZHANG Na, LI Lin-Mao, YANG Wen-Xiang*,LIU Da-Qun*   

  1. Department of Plant Pathology, Agricultural University of Hebei / Biological Control Center of Plant Diseases and Plant Pests of Hebei Province / National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, China
  • Received:2011-09-02 Revised:2011-09-25 Published:2011-12-12 Published online:2011-09-29
  • Contact: 杨文香, E-mail: wenxiangyang2003@163.com, Tel: 0312-7528585; 刘大群, E-mail: ldq@hebau.edu.cn, Tel: 0312-7528500

摘要: 选用16个小麦叶锈菌菌系对14个小麦品种(系)进行抗叶锈性鉴定和苗期抗叶锈基因推导,初步分析这些品种(系)的抗性和携带的抗病基因;进一步利用21个与Lr基因紧密连锁或共分离的分子标记,对这14个品种(系)中可能含的抗叶锈基因进行鉴定。结果表明,s98351-2-2-2-1可能含Lr3aLr28Lr50;9629-03A-4-1-1可能含Lr37;97167-1-2-1-1-2-1、919-20-2c2、9589、免中438、9916-8-6和9916-8-18含Lr26;96104-1-5-1c2可能含Lr28;00-55-3-1-1含Lr1;1R13可能含Lr24Lr37Lr38;1R17可能含Lr24Lr38;1R35含Lr10Lr34,还可能含Lr3aLr50;9524-1-2-2-1含未知抗叶锈基因或本试验使用的已知抗病基因以外的抗叶锈基因。所有品种(系)均不含Lr9Lr19Lr20Lr21Lr29Lr35Lr42Lr47基因。测试的14个品种(系)中有比较丰富的抗叶锈病基因,可为育种提供丰富的抗源。

关键词: 小麦叶锈, 抗病基因, 基因推导, 分子标记辅助选择

Abstract: The objective of this study was to detect resistance genes to leaf rust in 14 wheat cultivars or lines. The resistance of the 14 wheat cultivars or lines was investigated at seedling and adult stages, and the resistance genes at seedling stage were postulated by inoculating 16 races of Puccinia triticina. Further validation was conducted by using 21 molecular markers cosegregated with or closely linked to the known Lr genes. According to the results of both phenotypic identification and molecular marker data, the information of the resistance genes in the 14 cultivars or lines was obtained. Genes Lr3a, Lr28 and Lr50 were postulated in s98351-2-2-2-1. Gene Lr37 was possibly carried by 9629-03A-4-1-1. Lr26 was present in 97167-1-2-1-1-2-1, 919-20-2c2, 9589, Mianzhong 438, 9916-8-6, and 9916-8-18. Lr28 was possibly present in 96104-1-5-1c2. Lr1 was contained in 00-55-3-1-1. Lr24, Lr37, and Lr38 were possibly in 1R13. Lr24 and Lr38 were possibly carried by 1R17. Gene Lr10 and Lr34 were detected in 1R35, and Lr3a and Lr50 were also postulated in 1R35. Besides, 9524-1-2-2-1 might contain unknown or untested resistance genes against P. triticina pathotypes. Genes Lr9, Lr19, Lr20, Lr21, Lr29, Lr35, and Lr42 were not present in all cultivars or lines. The results indicate that these cultivars and lines carry diverse resistance genes to wheat leaf rust, and can be used as resistance resource for resistance breeding.

Key words: Wheat leaf rust, Resistance gene, Gene postulation, Molecular marker-assisted selection

[1]Komer J A. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol, 1996, 34: 435–455
[2]McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2010 supplement.
[2011-03-01]. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2010.pdf
[3]Yang W-X(杨文香). The postulated genes for resistance to leaf rust in 21 wheat cultivars used in Hebei province. J Agric Univ Hebei (河北农业大学学报), 2000, 23(3): 69–72 (in Chinese with English abstract)
[4]Chen W-Q(陈万权), Qin Q-M(秦庆明), Chen Y-L(陈扬林), Wu Z-H(吴支行), Ma Z-Q(马志强), Liao Q(廖琴). Leaf rust resistance of 40 wheat cultivars in China. Acta Phytopathol Sin (植物病理学报), 2008, 38(1): 51–57 (in Chinese with English abstract)
[5]Yang W-X(杨文雄), Yang F-P(杨芳萍), Liang D(梁丹), He Z-H(何中虎), Shang X-W(尚勋武), Xia X-C(夏先春). Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars. Acta Agron Sin (作物学报), 2008, 34(7): 1109–1113 (in Chinese with English abstract)
[6]Ding Y-H(丁艳红), Liu H(刘欢), Shi L-H(师丽红), Wen X-L(温晓蕾), Zhang N(张娜), Yang W-X(杨文香), Liu D-Q(刘大群). Wheat leaf rust resistance in 28 Chinese wheat mini-core collections. Acta Agron Sin (作物学报), 2010, 36(7): 1126–1134 (in Chinese with English abstract)
[7]Flor H H. The complementary genetics systems in flax and flax rust. Adv Genet, 1956, 8: 29–54
[8]Browder L E. Designation of two genes for resistance to Puccinia recondita in triticum aestivum. Crop Sci, 1972, 12: 705–706
[9]Yuan Z-Y(原宗英), Chen W-Q(陈万权), Wu Y-P(武英鹏), Li Y-F(李艳芳), Zeng W-F(曾卫芳). Leaf rust resistance of major wheat cultivars in Shanxi Province. Acta Agric Boreali-Sin(华北农学报), 2003, 18(4): 107–110 (in Chinese with English abstract)
[10]Li Z F, Xia X C, He Z H, Li X, Zhang L J, Wang H Y, Meng Q F, Yang W X, Li G Q, Liu D Q. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Dis, 2010, 94: 45–53
[11]Qiu J W, Schürch A C, Yahiaoui N, Dong L L, Fan H J, Zhang Z J, Keller B, Ling H Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor Appl Genet, 2007, 115: 159–168
[12]Gupta S K, Charpe A, Koul S, Prabhu K V, Haq Q M R. Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome, 2005, 48: 823–830
[13]Schachermayr G, Siedler H, Gale M D, Winzeler H, Winzeler M, Keller B. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor Appl Genet, 1994, 88: 110–115
[14]Schachermayr G, Feuillet C, Keller B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Mol Breed, 1997, 3: 65–74
[15]Gupta S K, Charpe A, Prabhu K V, Haque Q M R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet, 2006, 113: 1027–1036
[16]Neu C, Stein N, Keller B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome, 2002, 45: 737–744
[17]Huang L, Gill B S. An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet, 2001, 103: 1007–1013
[18]Schachermayr G M, Messmer M M, Feuillet C, Winzeler H, Winzeler M, Keller B. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor Appl Genet, 1995, 90: 982–990
[19]Gupta S K, Charpe A, Koul S, Haque Q M R, Prabhu K V. Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica, 2006, 150: 233–240
[20]Chai J F, Zhou R H, Jia J Z, Liu X. Development and application of a new codominant PCR marker for detecting 1BL•1RS wheat–rye chromosome translocations. Plant Breed, 2006, 125: 302–304
[21]Froidmont D D. A codominant marker for the 1BL•1RS wheat-rye translocation via multiplex PCR. J Cereal Sci, 1998, 27: 229–232
[22]Cherukuri D P, Gupta S K, Charpe A, Koul S, Prabhu K V, Singh R B, Haq Q M R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica, 2005, 143: 19–26
[23]Tar M, Purnhauser L, Csösz L, Mesterházy A, Gyulai G. Identification of molecular markers for an efficient leaf rust resistance gene (Lr29) in wheat. Acta Biol Szegediensis, 2002, 46: 133–134
[24]Lagudah E S, Mcfadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 2006, 114: 21–30
[25]Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R. P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119: 889–898
[26]Gold J, Harder D, Townley-Smith F, Aung T, Procunier J. Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Plant Biotechnol, 1999, 2: 1–6
[27]Helguera M, Khan I A, Kolmer J, Lijavetzky D, Zhong-Qi L, Dubcovsky J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci, 2003, 43: 1839–1847
[28]Yan H-F(闫红飞), Yang W-X(杨文香), Chu D(褚栋), Liu D-Q(刘大群). A new marker tagged to the leaf rust resistance gene Lr38. Sci Agric Sin(中国农业科学), 2008, 41(11): 3604–3609 (in Chinese with English abstract)
[29]Sun X C, Bai G H, Carver B F, Bowden R. Molecular mapping of wheat leaf rust resistance gene Lr42. Crop Sci, 2010, 50: 59–66
[30]Helguera M, Khan I A, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theor Appl Genet, 2000, 100: 1137–1143
[31]Chen Y-F(陈云芳), Liu L(刘莉), Yang W-X(杨文香), Liu D-Q(刘大群). Molecular marker detection of leaf rust resistance gene Lr19 in 33 common wheat cultivars. Mol Plant Breed (分子植物育种), 2008, 6(5): 1015–1018 (in Chinese with English abstract)
[32]Hanzalová A, Sumíková T, Bartoš P. Determination of leaf rust resistance genes Lr10, Lr26 and Lr37 by molecular markers in wheat cultivars registered in the Czech Republic. Czech J Genet Plant Breed, 2009, 45(2): 79–84
[33]Roelfs A P, Singh R P, Saari E E. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, DF: CIMMYT, 1992. pp 7–14
[34]Dubin H J, Johnson R, Stubbs R W. Postulated genes for resistance to strip rust in selected CIMMYT and related wheats. Plant Dis, 1989, 73: 472–475
[35]Gill K S, Lubbers E L, Gill B S, Raupp W J, Cox T S. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome, 1991, 34: 362–374
[36]Vida G, Gál M, Uhrin A, Veisz O, Syed N H, Flavell A J, Wang Z, Bed? Z. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica, 2009, 170: 67–76
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[4] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[5] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[6] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[7] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[8] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[9] 向文扬,杨永庆,任秋燕,晋彤彤,王丽群,王大刚,智海剑. 大豆抗SC3候选基因的克隆及分析[J]. 作物学报, 2019, 45(12): 1822-1831.
[10] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[11] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[12] 肖湘谊,史学涛,盛浩闻,刘金灵,肖应辉. 水稻抗稻瘟病基因Pi47的精细定位和候选基因分析[J]. 作物学报, 2018, 44(7): 977-987.
[13] 田宇,杨蕾,李英慧,邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用[J]. 作物学报, 2018, 44(11): 1600-1611.
[14] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源[J]. 作物学报, 2018, 44(04): 473-482.
[15] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性[J]. 作物学报, 2018, 44(04): 505-511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!