欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2241-2250.doi: 10.3724/SP.J.1006.2011.02241

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮时期对小麦籽粒HMW-GS积累及GMP粒度分布的影响

曹丽1,王振林1,*,戴忠民2,尹燕枰1,翟学旭1,倪英丽1,蔡铁1,李勇1,王平1,陈二影1,郭俊祥1,陈晓光1   

  1. 1作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安271018; 2德州学院, 山东德州 253023
  • 收稿日期:2011-04-19 修回日期:2011-07-25 出版日期:2011-12-12 网络出版日期:2011-09-29
  • 通讯作者: 王振林, E-mail: zlwang@sdau.edu.cn, zlwangsd@sina.com, Tel: 0538-8241359
  • 基金资助:

    本研究由国家自然科学基金项目(30871477), 国家重点基础研究发展计划项目(973计划)项目(2009CB118602)和山东省自然科学基金项目(ZR2010CM044)资助。

Effect of Nitrogen Fertilization Timing on HMW-GS Accumulation and GMP Size Distribution in Wheat Grains

CAO Li1,WANG Zhen-Lin1,*,DAI Zhong-Min2,YIN Yan-Ping1,ZHAI Xue-Xu1,NI Ying-Li1,CAI Tie1,LI Yong1,WANG Ping1,CHEN Er-Ying1,GUO Jun-Xiang1,CHEN Xiao-Guang1   

  1. 1 State Key Laboratory of Crop Biology / Agronomy College, Shandong Agricultural University, Tai’an 271018, China; 2 Dezhou College, Dezhou 253023, China
  • Received:2011-04-19 Revised:2011-07-25 Published:2011-12-12 Published online:2011-09-29
  • Contact: 王振林, E-mail: zlwang@sdau.edu.cn, zlwangsd@sina.com, Tel: 0538-8241359

摘要: 在225 kg hm-2施氮水平下, 设置起身肥(SE, GS 30), 拔节肥(JT, GS 32)和孕穗肥(BT, GS 41) 3个追施氮肥处理(底追比1:1), 研究了追肥时期对强筋小麦济南17和弱筋小麦鲁麦21籽粒HMW-GS积累和GMP粒度分布的影响。结果表明, 两品种籽粒HMW-GS于花后14 d均已形成, 济南17籽粒HMW-GS和GMP含量均高于鲁麦21, 说明强筋小麦具有较强的谷蛋白积累能力。济南17成熟期籽粒HMW-GS和GMP含量以SE处理最高, 施氮时期后移其含量呈下降趋势。JT处理显著提高鲁麦21灌浆中后期HMW-GS的积累速度, 延长HMW-GS的快速积累期。济南17 SE处理和鲁麦21 JT处理的籽粒x型亚基(1、4或5、7)在灌浆中后期的积累速率显著提高。追肥时期对y型亚基的积累速率无显著影响。追氮时期后移均提高两品种籽粒GMP小颗粒的(粒径<12 μm)体积和表面积百分比, 降低大颗粒(粒径>100 μm)体积和表面积百分比。济南17粒径>12 μm的GMP颗粒数目百分比因追氮时期后移而增加, 鲁麦21粒径>12 μm的GMP颗粒数目百分比则降低。含4+12亚基的强筋小麦济南17比含5+10亚基的弱筋小麦鲁麦21偏向于更高的大颗粒体积比例, 说明亚基间的聚合和GMP颗粒的分布不仅与亚基类型有关, 而且与单位面粉中亚基的含量密切相关。

关键词: 小麦, 施氮时期, 高分子量谷蛋白亚基(HMW-GS), 谷蛋白大聚合体(GMP)

Abstract: Wheat processing quality has close relationships with high molecular weight glutenin subunits (HMW-GS) and glutenin macropolyer (GMP) in grains. Nitrogen fertilization scheme could affect the accumulation of HMW-GS and the size distribution of GMP. In this study, we used a strong gluten winter wheat cultivar, Jinan 17, and a weak gluten winter wheat cultivar, Lumai 21, to investigate the effects of nitrogen topdressing stage on the accumulation of HMW-GS and the size distribution of GMP in grains. The nitrogen fertilizer rate during the whole growth period was 225 kg ha-1, of which a half was applied as base fertilizer and the other half was topdressed at pseudo stem erection (SE, GS 30), jointing (JT, GS 32), or booting (BT, GS 41) stage. The spike samples were collected from 7 d after anthesis (DAA) to maturity with a 7-day interval. The HMW-GS in grains formed before 14 DAA, and Jinan 17 had higher contents of HMW-GS and GMP than Lumai 21, which indicated that more glutenin is accumulated in the strong gluten cultivar than in the weak gluten cultivar. At maturity, the contents of HMW-GS and GMP in Jinan 17 showed decreasing trends with the delay of topdressing practice, and the highest values were observed in the SE treatment. In Lumai 21, compared to the SE and BT treatments, the JT treatment significantly accelerated the HMW-GS accumulation at middle-late stage of grain filling, and the rapid accumulation period was prolonged. At middle-late stage of grain filling, the accumulation rates of x-type subunits (1, 4, 5, and 7) were increased significantly in the SE treatment of Jinan 17 and the JT treatment of Lumai 21, whereas the y-type subunits were seldom affected by nitrogen application timging. For both cultivars, delay of nitrogen topdressing enhanced the percentages of volume and surface of GMP particle with diameter less than 12 μm, but reduced those of GMP particle with diameter larger than 100 µm. The percentage of GMP particle number with diameter larger than 12 μm was increased in Jinan 17 with the delay of nitrogen topdressing but decreased in Lumai 21.The percentage of large GMP particle volume was higher in Jinan 17 (containing subunit pair 4+12) than in Lumai 21 (containing subunit pair 5+10). This result suggested that polymerization of subunits and GMP particles are related to not only the subunit type but also the subunit content per unit of flour.

Key words: Wheat, Nitrogen fertilization stage, High molecular weight glutenin subunits (HMW-GS), Glutenin macropolyer (GMP)

[1]Sugiyama T, Rafalski A, Peterson D, Soll D. A wheat HMW glutenin subunit gene reveals a highly repeated structure. Nucl Acids Res, 1985, 13: 8729−8737
[2]Don C, Lichtendonk W J, Plijter J J, Hamer R J. Glutenin macropolymer: a gel formed by glutenin particles. J Cereal Sci, 2003, 37: 1−7
[3]Don C, Lookhart G, Naeem H, MacRitchie F, Hamer R J. Heat stress and genotype affect the gluten in particles of the gluten in macropolymer-gel fraction. J Cereal Sci, 2005, 42: 69−80
[4]Don C, Mann G, Bekes F, Hamer R J. HMW-GS affects the properties of glutenin particles in GMP and thus flour quality. J Cereal Sci, 2006, 44: 127−130
[5]Sun H(孙辉), Yao D-N(姚大年), Li B-Y(李保云), Liu G-T(刘广田), Zhang S-Z(张树臻). Correlation between content of glutenin macropolymer (GMP) in wheat and baking quality. Chin Cereals Oils Assoc (中国粮油学报), 1998, 13(6): 13−16 (in Chinese with English abstract)
[6]Fu B X, Sapirstein H D. Procedure for isolating monomeric proteins and polymeric glutenin of wheat flour. Cereal Chem, 1996, 73: 143−152
[7]MacRitchie F. Conversion of weak flour to a strong one by increasing the proportion of its high molecular weight gluten protein. J Sci Food Agric, 1976, 24: 1325−1329
[8]Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheat: effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23−41
[9]Sapirstein H D, Fu B X. Intercultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin, and residue protein in wheat flour and relationships to breadmaking quality. Cereal Chem, 1998, 74: 500−507
[10]Zhao H-X(赵惠贤), Hu S-W(胡胜武), Ji W-Q(吉万全), Xue X-Z(薛秀庄), Guo A-G(郭蔼光), Mares D. Study on relationship between the size distribution of glutenin polymeric protein and wheat flour mixing properties. Sci Agric Sin (中国农业科学), 2001, 34(5): 465−468 (in Chinese with English abstract)
[11]Payne P I, Harris P A, Law C N, Holt L M, Blackman J A. The high-molecular-weight subunits of glutenin: Structure, genetics and relationship to bread-making quality. Ann Technol Agric, 1980, 29: 309−320
[12]Zhu J B, Khan K. Characterization of monomeric and glutenin polymeric proteins of hard red spring wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chem, 1999, 76: 261−269
[13]Yue H-W(岳鸿伟), Qin X-D(秦晓东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星), Jiang D(姜东). Effects of nitrogen rate on accumulations of HMW-GS and GMP in wheat grain. Acta Agron Sin (作物学报), 2006, 32(10): 1678−1683 (in Chinese with English abstract)
[14]Sutton K H. Qualitative and quantitative variation among high molecular weight subunits of glutenin detected by reverse-phase high -performance liquid chromatography. J Cereal Sci, 1991, 14: 25−34
[15]Kolster P, Krechting C F, Gelder W M J. Quantification of individual high molecular weight glutenin subunits of wheat glutenin using SDS-PAGE and scanning densitometry. J Cereal Sci, 1992, 15: 49−61
[16]Huang D Y, Khan K. Quantitative determination of high molecular weight glutenin subunit of hard red spring wheat by SDS-PAGE: I. Quantitative effects of total amounts on breadmaking quality characteristics. Cereal Chem, 1997, 74: 781−785
[17]Don C, Lichtendonk W J, Plijter J J, Vliet T, Hamer R J. The effect of mixing on glutenin particle properties: aggregation factors that affect gluten function in dough. J Cereal Sci, 2005, 41: 69−83
[18]Shi S-B(石书兵), Ma L(马林), Shi Q-H(石庆华), Liu X(刘霞), Chen L-M(陈乐梅), Liu J-X(刘建喜), Wang Z-L(王振林). Effect of nitrogen application timing on protein constitutes and its dynamic change in wheat grain. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(4): 456−460 (in Chinese with English abstract)
[19]Ma D-Y(马冬云), Guo T-C(郭天财), Yue Y-J(岳艳军), Song X(宋晓), Zhu Y-J(朱云集), Wang C-Y(王晨阳), Wang Y-H(王永华). Effects of nitrogen application at different developmental stages on nitrogen accumulation and translocation in winter wheat. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(2): 262−268 (in Chinese with English abstract)
[20]Weegels P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and repolymerisation of wheat glutenin during dough processing: I. Relationships between glutenin macropolymer content and quality parameters. J Cereal Sci, 1996, 23: 103−111
[21]Liang R-Q(梁荣奇), Zhang Y-R(张义荣), You M-S(尤明山), Mao S-F(毛善锋), Song J-M(宋建民), Liu G-T(刘广田). Multi-stacking SDS-PAGE for wheat glutenin polymer and its relation to bread-making quality. Acta Agron Sin (作物学报), 2002, 28(5): 609−614 (in Chinese with English abstract)
[22]Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Res, 1974, 14: 415−421
[23]Yue H-W(岳鸿伟), Tan W-N(谭维娜), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of post anthesis drought and waterlogging on contents of high molecular weight glutenin subunits and glutenin macropolymer in wheat grain. Acta Agron Sin (作物学报), 2007, 33(11): 1845−1849 (in Chinese with English abstract)
[24]Bo Y(伯云), Li H-W(李华伟), Mou H-R(牟会荣), Cai J(蔡剑), Zhou Q(周琴), Dai T-B(戴廷波), Cao W-X(曹卫星), Jiang D(姜东). Effects of shading from jointing stage to maturity stage on high molecular weight glutenin subunits accumulation and glutenin macropolymer content in wheat grain. Sci Agric Sin (中国农业科学), 2009, 42(10): 3451−3458 (in Chinese with English abstract)
[25]Zhang D-Y(张定一), Zhang Y-Q(张永清), Yang W-D(杨武德), Yan C-P(闫翠萍), Ji H-T(姬虎太). Effect of nitrogen application on high molecular weight glutenin subunit expression and grain quality of winter wheat. Plant Nutr Fert Sci (植物营养与肥料学报), 2008, 14(2): 235−241 (in Chinese with English abstract)
[26]Payne P I. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol, 1987, 38: 141−153
[27]Zhu J B, Khan K. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments. Cereal Chem, 2002, 79: 783–786
[28]Wang F-C(王凤成), Zhu J-B(朱金宝), Khan K, Brien L O, Chen W-Y(陈万义). The composition and quantity of wheat glutenin subunits in relation to high molecular weight glutenin polymers and their effects on bread making quality. J Chin Cereals Oils Assoc (中国粮油学报), 2004, 19(3): 13−17 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!