作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2269-2276.doi: 10.3724/SP.J.1006.2011.02269
高芳1,林英杰2,张佳蕾1,杨传婷1,张凤1,杨晓康1,赵华建3,李向东1,*
GAO Fang1,LIN Ying-Jie2,ZHANG Jia-Lei1,YANG Chuan-Ting1,ZHANG Feng1,YANG Xiao-Kang1,ZHAO Hua-Jian3,LI Xiang-Dong1,*
摘要: 选用高油花生品种豫花15和高蛋白品种XB023,研究了土壤不同浓度镉胁迫对花生生理特性和产量品质的影响。结果表明, 轻、中度镉胁迫(1.0 mg kg–1和2.5 mg kg–1)促进花生营养生长,重、高度镉胁迫(7.5 mg kg–1和15.0 mg kg–1)抑制营养生长;轻、中度镉胁迫增加XB023的叶绿素含量,重、高度镉胁迫降低两品种叶片叶绿素含量和净光合速率。镉胁迫降低了两品种荚果和籽仁产量,豫花15在中度镉胁迫(2.5 mg kg–1)下产量即开始明显降低,而XB023在重度镉胁迫(7.5 mg kg–1)时产量才开始显著下降。镉胁迫对花生不同品质类型品种的影响不同,镉胁迫增加了豫花15的籽仁可溶性总糖含量,降低了脂肪、蛋白质含量及油酸/亚油酸(O/L)比值;降低了XB023籽仁中可溶性糖含量、脂肪含量及O/L比值,轻、中度镉胁迫可增加籽仁蛋白质含量及赖氨酸和苏氨酸等氨基酸组分。镉胁迫导致花生体内镉含量增加,豫花15植株内镉含量高于XB023,但籽仁中镉含量小于XB023。
[1]Wan S-B(万书波). Peanut Cultivation of China (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 1–2 (in Chinese) [2]Wan S-B(万书波). Peanut Quality (花生品质学). Beijing: China Agricultural Science and Technology Press, 2007. pp 5–6 (in Chinese) [3]Hong F(洪峰), Jin T-Y(金泰廙), Lu G-D(卢国栋), Yin Z-Y(殷征宇). Renal dysfunction in workers exposed to arsenic and cadmium. Chin J Ind Hygiene Occup Dis (中华劳动卫生职业病杂志), 2003, 22(21): 432–436 (in Chinese with English abstract) [4]Cui Y-J(崔玉静), Huang Y-Z(黄益宗), Zhu Y-G(朱永官). Adverse health effects of cadmium and related factors. J Hygiene Res (卫生研究), 2006, 35(5): 656–658 (in Chinese with English abstract) [5]Cao Y(曹莹), Li J-D(李建东), Zhao T-H(赵天宏), Guo W(郭伟). Effects of Cd stress on physiological and biochemical traits of maize. J Agro-Environ Sci (农业环境科学学报), 2007, 26(suppl): 8–11 (in Chinese with English abstract) [6]Bell M J, McLaughlin M J, Wright G C, Cruickshank A. Inter-and intra-specific variation in accumulation of cadmium by peanut, soybean, and navy bean. Austr J Agric Res, 1997, 48: 1151–1160 [7]Arnon D I. Copper enzymes in isolated chloroplast, polyphenoloxidase in Beta vulgari. Plant Physiol, 1949, 24: 1–5 [8]He Z-F(何照范). Analysis Technique for Grain Quality of Cereals and Oils (粮油籽粒品质及其分析技术). Beijing: Agriculture Press, 1985. pp 37–41 [9]Biochemistry Teaching and Research Group of Biology Department of Beijing University (北京大学生物系生物化学教研室). A Laboratory Manual for Biochemistry (生物化学实验指导). Beijing: Higher Education Press, 1979 (in Chinese) [10]Lagriffoul A, Mocquot B, Mench M, Vangronsveld J. Cadmium toxicity effects on growth, mineral and activities of stress related enzymes in young maize plants. Plant Soil, 1998, 200: 241–250 [11]Zhu J-L(朱建玲), Xu Z-F(徐志防), Cao H-L(曹洪麟), Ye W-H(叶万辉). Effect of cadmium on photosynthetic traits in Wedelia trilobata. Ecol Environ (生态环境), 2008, 17(2): 657–660 (in Chinese with English abstract) [12]Zhang C(张从), Xia L-J(夏立江). Bioremediation of Contaminated Soil. Beijing: China Environmental Science Press, 2000. pp 44–46 (in Chinese) [13]Guo Y-P(郭亚平), Hu Y-L(胡曰利). Heavy metal pollution and the phytoremediation technology in the soil-plant system. J Central South For Univ (中南林学院学报), 2005, (2): 25–28 (in Chinese with English abstract) [14]Shan S-H(单世华), Fan Z-X(范仲学), Lü X(吕潇), Yang Z-Y(杨志艺), Wan S-B(万书波). Effects of cadmium treatment on seed quality and yield of different peanut (Arachis hypogaea L.) genotypes. J Agric Sci Technol (中国农业科技导报), 2009, 11(3): 102–108 (in Chinese with English abstract) [15]Liu W-L(刘文龙), Wang K-R(王凯荣), Wang M-L(王铭伦). Physiological responses of different peanut (Arachis hypogaea L.) varieties to cadmium stress. Chin J Appl Ecol (应用生态学报), 2009, 20(2): 451–459 (in Chinese with English abstract) [16]Niu C-Q(牛常青). Effect of heavy metal cadmium on Arachis hypogaea’s seedling growth. J Jinzhong Univ (晋中学院学报), 2009, 26(3): 63–67 (in Chinese with English abstract) [17]Wu G-L(吴甘霖). Effects of cadmium on the growth, physiological and ecological characteristics of peanut seedling. J Biol (生物学杂志), 2008, 25(5): 31–33 (in Chinese with English abstract) [18]Wu F B, Dong J, Jia G X, Zheng S J, Zhang G P. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agric Sci China, 2006, 5: 68–76 [19]Huang D-F(黄冬芬), Xi L-L(奚岭林), Yang L-N(杨立年), Wang Z-Q(王志琴), Yang J-C(杨建). Comparisons in agronomic and physiological traits of rice genotypes differing in cadmium-tolerance. Acta Agron Sin (作物学报), 2008, 34(5): 809–817 (in Chinese with English abstract) [20]Wang K-R(王凯荣), Qu W(曲伟), Liu W-L(刘文龙), Wang M-L(王铭伦), Chen D-X(陈殿绪), Li L(李林). Toxic effect of Cd on peanut seedlings and the intra-specific variations. Ecol Environ Sci (生态环境学报), 2010, 19(7): 1653–1658 (in Chinese with English abstract) [21]Liu J G, Liang J S, Li K Q, Zhang Z J, Yu B Y, Lu X L, Yang J C, Zhu Q S. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 2003, 52: 1467–1473 [22]Wang K-R(王凯荣), Guo Y(郭焱), He D-Y(何电源). Research of heavy metal pollution on rice quality. Agric Environ Protect, 1993, 12(6): 254–257 (in Chinese with English abstract) [23]Cao Y(曹莹), Huang R-D(黄瑞冬), Jiang W-C(蒋文春), Cao Z-Q(曹志强). Effect of heavy metal lead and cadmium on grain quality of maize. J Shenyang Agric Univ (沈阳农业大学学报), 2005, 36(2): 218–220 (in Chinese with English abstract) [24]He Y-Q(何勇强), Tao Q-N(陶勤南), Obata H, Hirose W. Distribution of cadmium in soybean and quality of soybean seed under cadmium stress. Acta Sci Circumst (环境科学学报), 2000, 20(4): 510–512 (in Chinese with English abstract) |
[1] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[2] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[3] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[7] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[8] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[9] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[10] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[11] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[12] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|