欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2269-2276.doi: 10.3724/SP.J.1006.2011.02269

• 耕作栽培·生理生化 • 上一篇    下一篇

镉胁迫对花生生理特性、产量和品质的影响

高芳1,林英杰2,张佳蕾1,杨传婷1,张凤1,杨晓康1,赵华建3,李向东1,*   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室,山东泰安 271018;2 山东省昌乐县农业局,山东潍坊 262400;3 菱花集团有限公司,山东济宁 272073
  • 收稿日期:2011-04-13 修回日期:2011-07-25 出版日期:2011-12-12 网络出版日期:2011-09-29
  • 通讯作者: 李向东, E-mail: lixdong@sdau.edu.cn, Tel: 0538-8241194
  • 基金资助:

    本研究由国家“十一五”科技支撑计划项目(2009BADA8B03), 国家自然科学基金资助项目(30840056, 31171496)和教育部博士点基金资助项目(20093702110007)资助。

Effects of Cadmium Stresses on Physiological Characteristics, Pod Yield, and Seed Quality of Peanut

GAO Fang1,LIN Ying-Jie2,ZHANG Jia-Lei1,YANG Chuan-Ting1,ZHANG Feng1,YANG Xiao-Kang1,ZHAO Hua-Jian3,LI Xiang-Dong1,*   

  1. 1 College of Agronomy, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; 2 Changle Bureau of Agriculture, Weifang 262400, China; 3 Linghua Group Co., Ltd, Jining 272073, China
  • Received:2011-04-13 Revised:2011-07-25 Published:2011-12-12 Published online:2011-09-29
  • Contact: 李向东, E-mail: lixdong@sdau.edu.cn, Tel: 0538-8241194

摘要: 选用高油花生品种豫花15和高蛋白品种XB023,研究了土壤不同浓度镉胁迫对花生生理特性和产量品质的影响。结果表明, 轻、中度镉胁迫(1.0 mg kg–1和2.5 mg kg–1)促进花生营养生长,重、高度镉胁迫(7.5 mg kg–1和15.0 mg kg–1)抑制营养生长;轻、中度镉胁迫增加XB023的叶绿素含量,重、高度镉胁迫降低两品种叶片叶绿素含量和净光合速率。镉胁迫降低了两品种荚果和籽仁产量,豫花15在中度镉胁迫(2.5 mg kg–1)下产量即开始明显降低,而XB023在重度镉胁迫(7.5 mg kg–1)时产量才开始显著下降。镉胁迫对花生不同品质类型品种的影响不同,镉胁迫增加了豫花15的籽仁可溶性总糖含量,降低了脂肪、蛋白质含量及油酸/亚油酸(O/L)比值;降低了XB023籽仁中可溶性糖含量、脂肪含量及O/L比值,轻、中度镉胁迫可增加籽仁蛋白质含量及赖氨酸和苏氨酸等氨基酸组分。镉胁迫导致花生体内镉含量增加,豫花15植株内镉含量高于XB023,但籽仁中镉含量小于XB023。

关键词: 花生, 镉胁迫, 生理特性, 产量, 籽仁品质

Abstract: A pot experiment was carried out to study the effects of different cadmium concentrations on peanut physiological characteristics, yield and quality using peanut cultivars of Yuhua 15 and XB 023. Five Cd concentrations [0 mg kg–1 (CK),1.0 mg kg–1 (light Cd stress),2.5 mg kg–1 (medium Cd stress),7.5 mg kg–1 (heavy Cd stress) and 15.0 mg kg–1 (high Cd stress)] were treated by basal dressing in 2009 and 2010. The results showed that light and medium Cd stresses could promote peanut vegetative growth, but heavy and high Cd stresses inhibit its growth. Heavy and high Cd stresses decreased the chlorophyll content and photosynthetic rate of the two peanut cultivars while light and medium Cd stresses increased the chlorophyll content of XB023 leaves. Cd stresses decreased the yield of pod and kernel. The yield of Yuhua 15 decreased obviously when the Cd concentration reached 2.5 mg kg–1 (medium Cd stresses), however, for XB023, reached 7.5 mg kg–1 (heavy Cd stresses). Cadmium stress had different influence on peanut quality in different cultivars. It could increase the content of soluble sugar, decrease the content of protein and oil, and reduce the ratio of oleic acid to linoleic acid (O/L) in Yuhua 15 kernels; But decrease the content of soluble sugar and oil, reduce the ratio of oleic acid to linoleic acid (O/L) in XB023 kernels. Light and medium Cd stresses could increase the content of protein and its components of Lys and Thr in peanut kernels. Cd stresses could increase the cadmium content in peanut. The cadmium content was higher in Yuhua 15 plants than in XB 023 plants, but was less in seed kernel than in XB 023 kernel.

Key words: Peanut, Cd stresses, Physiological characteristics, Yield, Kernel quality

[1]Wan S-B(万书波). Peanut Cultivation of China (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 1–2 (in Chinese)
[2]Wan S-B(万书波). Peanut Quality (花生品质学). Beijing: China Agricultural Science and Technology Press, 2007. pp 5–6 (in Chinese)
[3]Hong F(洪峰), Jin T-Y(金泰廙), Lu G-D(卢国栋), Yin Z-Y(殷征宇). Renal dysfunction in workers exposed to arsenic and cadmium. Chin J Ind Hygiene Occup Dis (中华劳动卫生职业病杂志), 2003, 22(21): 432–436 (in Chinese with English abstract)
[4]Cui Y-J(崔玉静), Huang Y-Z(黄益宗), Zhu Y-G(朱永官). Adverse health effects of cadmium and related factors. J Hygiene Res (卫生研究), 2006, 35(5): 656–658 (in Chinese with English abstract)
[5]Cao Y(曹莹), Li J-D(李建东), Zhao T-H(赵天宏), Guo W(郭伟). Effects of Cd stress on physiological and biochemical traits of maize. J Agro-Environ Sci (农业环境科学学报), 2007, 26(suppl): 8–11 (in Chinese with English abstract)
[6]Bell M J, McLaughlin M J, Wright G C, Cruickshank A. Inter-and intra-specific variation in accumulation of cadmium by peanut, soybean, and navy bean. Austr J Agric Res, 1997, 48: 1151–1160
[7]Arnon D I. Copper enzymes in isolated chloroplast, polyphenoloxidase in Beta vulgari. Plant Physiol, 1949, 24: 1–5
[8]He Z-F(何照范). Analysis Technique for Grain Quality of Cereals and Oils (粮油籽粒品质及其分析技术). Beijing: Agriculture Press, 1985. pp 37–41
[9]Biochemistry Teaching and Research Group of Biology Department of Beijing University (北京大学生物系生物化学教研室). A Laboratory Manual for Biochemistry (生物化学实验指导). Beijing: Higher Education Press, 1979 (in Chinese)
[10]Lagriffoul A, Mocquot B, Mench M, Vangronsveld J. Cadmium toxicity effects on growth, mineral and activities of stress related enzymes in young maize plants. Plant Soil, 1998, 200: 241–250
[11]Zhu J-L(朱建玲), Xu Z-F(徐志防), Cao H-L(曹洪麟), Ye W-H(叶万辉). Effect of cadmium on photosynthetic traits in Wedelia trilobata. Ecol Environ (生态环境), 2008, 17(2): 657–660 (in Chinese with English abstract)
[12]Zhang C(张从), Xia L-J(夏立江). Bioremediation of Contaminated Soil. Beijing: China Environmental Science Press, 2000. pp 44–46 (in Chinese)
[13]Guo Y-P(郭亚平), Hu Y-L(胡曰利). Heavy metal pollution and the phytoremediation technology in the soil-plant system. J Central South For Univ (中南林学院学报), 2005, (2): 25–28 (in Chinese with English abstract)
[14]Shan S-H(单世华), Fan Z-X(范仲学), Lü X(吕潇), Yang Z-Y(杨志艺), Wan S-B(万书波). Effects of cadmium treatment on seed quality and yield of different peanut (Arachis hypogaea L.) genotypes. J Agric Sci Technol (中国农业科技导报), 2009, 11(3): 102–108 (in Chinese with English abstract)
[15]Liu W-L(刘文龙), Wang K-R(王凯荣), Wang M-L(王铭伦). Physiological responses of different peanut (Arachis hypogaea L.) varieties to cadmium stress. Chin J Appl Ecol (应用生态学报), 2009, 20(2): 451–459 (in Chinese with English abstract)
[16]Niu C-Q(牛常青). Effect of heavy metal cadmium on Arachis hypogaea’s seedling growth. J Jinzhong Univ (晋中学院学报), 2009, 26(3): 63–67 (in Chinese with English abstract)
[17]Wu G-L(吴甘霖). Effects of cadmium on the growth, physiological and ecological characteristics of peanut seedling. J Biol (生物学杂志), 2008, 25(5): 31–33 (in Chinese with English abstract)
[18]Wu F B, Dong J, Jia G X, Zheng S J, Zhang G P. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agric Sci China, 2006, 5: 68–76
[19]Huang D-F(黄冬芬), Xi L-L(奚岭林), Yang L-N(杨立年), Wang Z-Q(王志琴), Yang J-C(杨建). Comparisons in agronomic and physiological traits of rice genotypes differing in cadmium-tolerance. Acta Agron Sin (作物学报), 2008, 34(5): 809–817 (in Chinese with English abstract)
[20]Wang K-R(王凯荣), Qu W(曲伟), Liu W-L(刘文龙), Wang M-L(王铭伦), Chen D-X(陈殿绪), Li L(李林). Toxic effect of Cd on peanut seedlings and the intra-specific variations. Ecol Environ Sci (生态环境学报), 2010, 19(7): 1653–1658 (in Chinese with English abstract)
[21]Liu J G, Liang J S, Li K Q, Zhang Z J, Yu B Y, Lu X L, Yang J C, Zhu Q S. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 2003, 52: 1467–1473
[22]Wang K-R(王凯荣), Guo Y(郭焱), He D-Y(何电源). Research of heavy metal pollution on rice quality. Agric Environ Protect, 1993, 12(6): 254–257 (in Chinese with English abstract)
[23]Cao Y(曹莹), Huang R-D(黄瑞冬), Jiang W-C(蒋文春), Cao Z-Q(曹志强). Effect of heavy metal lead and cadmium on grain quality of maize. J Shenyang Agric Univ (沈阳农业大学学报), 2005, 36(2): 218–220 (in Chinese with English abstract)
[24]He Y-Q(何勇强), Tao Q-N(陶勤南), Obata H, Hirose W. Distribution of cadmium in soybean and quality of soybean seed under cadmium stress. Acta Sci Circumst (环境科学学报), 2000, 20(4): 510–512 (in Chinese with English abstract)
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!