作物学报 ›› 2012, Vol. 38 ›› Issue (04): 578-588.doi: 10.3724/SP.J.1006.2012.00578
杨昆1,2,*,**,周永祥3,**,张贺翠1,赵永斌4,杨永军1,陆俊杏1,朱利泉1,2,*,薛丽琰1,吕俊1,2,高启国5
YANG Kun1,2,*,**,ZHOU Yong-Xiang3,**,ZHANG He-Cui1,ZHAO Yong-Bin4,YANG Yong-Jun1,LU Jun-Xing1,ZHU Li-Quan1,2,*,XUE Li-Yan1,LÜ Jun1, 2,GAO Qi-Guo5
摘要: 从甘蓝、大白菜与甘蓝型油菜中分离出EXO70A1基因,对该基因的序列进行生物信息学分析, 然后转化酵母Y187, 应用半定量RT-PCR检测BoEXO70A1基因的表达特性。结果表明, 3种芸薹属植物EXO70A1序列长度均为1 917 bp,相似性97.1%, 它们的gDNA序列均为单一序列,长度分别为3 797、3 752和3 770 bp,一致度达91.0%,均由12个外显子及11个内含子组成,除了第4、第5、第6、第8个内含子外,其余内含子的保守性低于外显子; 推导的3种蛋白质序列(BnEXO70A1、BrEXO70A1和BoEXO70A1)的相似度与一致性分别达99.8%与98.1%,其二级结构、三维结构及理化特性高度相似。EXO70A1基因的11个内含子的剪切位点均符合“GU-AG”法则,剪切受体(AG)的前20~50个碱基存在一段保守的序列“CU(A/G)A(C/U)”; 3种芸薹属植物与拟南芥EXO70A1基因的12个外显子的对应序列长度完全相同,所构成的编码区的序列一致性达90.1%,相应的蛋白质序列的相似度与一致性分别达99.8%与93.7%; 分子进化分析表明, EXO70A1在整个EXO70蛋白家族中及不同的植物间表现出较高的保守性; BoEXO70A1在酵母细胞Y187呈现弱表达; EXO70A1在甘蓝的雄蕊、幼茎、幼嫩花瓣、雌蕊、幼根及叶片中均能表达,可能属于组成型表达基因,但是其表达量在不同发育时期的不同器官中存在差异,授粉前雌蕊中最高,雄蕊中最低。由此可知,EXO70A1在芸薹属植物中整体高度保守, 但在酵母转化株和甘蓝各器官中的组成型表达有所差异,推测EXO70A1在植物细胞中具有多种重要的功能。
[1] Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell, 1980, 21: 205–215[2] Bowser R, Novick P. Sec15 protein, an essential component of the exocytotic apparatus, is associated with the plasma membrane and with a soluble 19.5S particle. J Cell Biol, 1991, 112: 1117–1131[3] Bowser R, Muller H, Govindan B, Novick P. Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J Cell Biol, 1992, 118: 1041–1056[4] TerBush D R, Novick P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol, 1995, 130: 299–312[5] TerBush D R, Maurice T, Roth D, Novick P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J, 1996, 15: 6483–6494[6] Guo W, Roth D, Walch-Solimena C, Novick P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J, 1999, 18: 1071–1080[7] Matern H T, Yeaman C, Nelson W J and Scheller R H. The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells. Proc Natl Acad Sci USA, 2001, 98, 9648–9653[8] Hsu S C, Hazuka C D, Foletti D L, Scheller R H. Targeting vesicles to specific sites on the plasma membrane: the role of the sec 6/8 complex. Trends Cell Biol, 1999, 9: 150–153[9] Fielding A B, Schonteich E, Matheson J, Wilson G, Yu X, Hickson G R, Srivastava S, Baldwin S A, Prekeris R, Gould G W. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J, 2005, 24: 3389–3399[10]Yeaman C, Grindstaff K K, Nelson W J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J Cell Biol, 2004, 117: 559–570[11] Vega I E, Hsu S C. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J Neurosci, 2001, 21: 3839–3848[12] Lipschutz J H, Mostov K E. Exocytosis: the many masters of the exocyst. Curr Biol, 2002, 12: R212–R214[13] Robinson N G, Guo L, Imai J, Toh-E A, Matsui Y, Tamanoi F. Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol Cell Biol, 1999, 19: 3580–3587[14] Boyd, C, Hughes T, Pypaert M, Novick P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol, 2004, 167: 889–901[15] Roumanie O, Wu H, Molk J N, Rossi G, Bloom K, Brennwald P. Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol, 2005, 170: 583–594[16] Wang H, Tang X, Balasubramanian M K. Rho3p regulates cell separation by modulating exocyst function in Schizosaccharomyces pombe. Genetics, 2003, 164, 1323–1331[17] Elias M, Drdova E, Ziak D, Bavlnka B, H´ala M, Cvrckova F, Soukupova H, Zarsky V. The exocyst complex in plants. Cell Biol Internatl, 2003, 27: 199–201[18] Chong Y T, Gidda S K, Sanford C, Parkinson J, Mullen R T, Goring D R. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytol, 2010, 185: 401–419[19] Zhang Y, Liu C M, Emons A M, Ketelaar T. The Plant Exocyst. J Integr Plant Biol, 2010, 52: 138–146[20] Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009, 21: 2655–2671[21] Kushnirov V V. Rapid and reliable protein extraction from yeast. Yeast, 2000, 16: 857–860[22]Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome, 2003, 46: 291–303[23] Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M J, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111: 1514–1523[24] Inaba R, and Nishio T. Phylogenetic analysis of Brassiceae based on the nucleotide sequences of the S-locus related gene, SLR1. Theor Appl Genet, 2002, 105: 1159–1165[25]OECD. Consensus document on the biology of Brassica napus L. (Oilseed rape). OCDE/GD(97)63, 1997[26] Bohossian H B, Skaletsky H, Page D C. Unexpectedly similar rates of nucleotide substitution found in male and female hominids. Nature, 2000, 406: 622–625[27] Zhao Z, Jin L, Fu Y X, Ramsay M, Jenkins T, Leskinen E, Pamilo P, Trexler M, Patthy L, Jorde L B, Ramos-Onsins S, Yu N, Li W H. Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22. Proc Natl Acad Sci USA, 2000, 97: 11354–11358[28]Chen F C, Vallender E J, Wang H, Tzeng C S, Li W H. Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences. J Hered, 2001, 92: 481–489[29] Mathews D J, Kashuk C, Brightwell G, Eichler E E, Chakravarti A. Sequence variation within the fragile X locus. Genome Res, 2001, 11: 1382–1391[30] Yu N, Zhao Z, Fu Y X, Sambuughin N, Ramsay M, Jenkins T, Leskinen E, Patthy L, Jorde L B, Kuromori T, Li W H. Global patterns of human DNA sequence variation in a 10-kb region on chromosome 1. Mol Biol Evol, 2001, 18: 214–222[31]Hare M P, Palumbi S R. High intron sequence conservation across three mammalian orders suggests functional constraints. Mol Biol Evol, 2003, 20: 969–978[32]Synek L, Schlager N, Eliáš M, Quentin M, Hauser M T, ?árský V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J, 2006, 48: 54–72[33] Hála M, Cole R, Synek L, Drdová E, Pe?enková T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler J E, ?árský V. An exocyst complex functions in plant cell growth in Arabidopsis and Tobacco. Plant Cell, 2008, 20: 1330–1345[34] Li S, van Os G M, Ren S, Yu D, Ketelaar T, Emons A M, Liu C M. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiol, 2010, 154: 1819–1830 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[4] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[5] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[6] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[7] | 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264. |
[8] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[9] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[10] | 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183. |
[11] | 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862. |
[12] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
[13] | 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861. |
[14] | 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213. |
[15] | 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594. |
|